About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Multi-level functionality in ferroelectric, hafnia-based thin films for edge logic and memory

Multi-level functionality in ferroelectric, hafnia-based thin films for edge logic and memory

Condensed matter physics, chemistry & nanosciences Emerging materials and processes for nanotechnologies and microelectronics Solid state physics, surfaces and interfaces Technological challenges

Abstract

The numerical transition to a more attractive, agile and sustainable economy relies on research on future digital technologies.

Thanks to its non-volatility, CMOS compatibility, scaling and 3D integration potential, emerging memory and logic technology based on ferroelectric hafnia represents a revolution in terms of possible applications. For example, with respect to Flash, resistive or phase change memories, ferroelectric memories are intrinsically low power by several orders of magnitude.

The device at the heart of the project is the FeFET-2. It consists of a ferroelectric capacitor (FeCAP) wired to the gate of a standard CMOS transistor. These devices have excellent endurance, retention and power rating together with the plasticity required for neuromorphic applications in artificial intelligence.

The thesis will use advanced characterization techniques, in particular photoemission spectroscopy and microscopy to establish the links between material properties and the electrical performance of the FeCAPs.

Operando experiments as a function of number of cycles, pulse amplitude and duration will allow exploring correlations between the kinetics of the material properties and the electrical response of the devices.

The thesis work will be carried out in close collaboration with NaMLab (Dresden) and the CEA LETI (Grenoble).

Laboratory

Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Laboratoire d’Etude des NanoStructures et Imagerie de Surface
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down