About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Multi-target capture strategy for micro total analysis systems

Multi-target capture strategy for micro total analysis systems

Engineering sciences Health and environment technologies, medical devices Technological challenges Thermal energy, combustion, flows

Abstract

The concentration of biomarkers and pathogens in biological samples is generally limited by the preparation of these samples after their collection. In addition, their detection, when based on an antibody-antigen capture reaction, can be difficult to optimize within biosensors. If the approach which consists of functionalizing a wall to capture molecules or particles flowing in a micro channel seems simple at first glance, the results are often below expectations. On the one hand, the capture of molecules is a convection-diffusion problem; on the other hand, capturing particles must also take into account the pressure distributions on them. Thus the proposed thesis subject is part of a project to optimize the capture and concentration of all types of biological and biochemical targets within fluidic microsystems.

The thesis project will begin by the exploration of models dedicated to the capture of biochemical and biological targets within a microchannel. The objective of this task is to specify the optimal and common conditions for capturing all targets of interest. Among all possible configurations, maintaining functionalized beads dispersed in volume by an adequate field will be favored because it is expected to be optimal. This configuration will be a subject of particular attention, especially as it offers an original microfluidic implementation, particularly in the study of organoids on chips to capture, concentrate and monitor their secretions.

For this project, the laboratory is looking for a student motivated by experimental work in microfluidics with a detailed understanding of the involved physical phenomena. In addition, knowledge of classic molecular biology tests will be appreciated. Skills in numerical simulation are also an asset when applying for the proposed thesis.

Laboratory

Département Microtechnologies pour la Biologie et la Santé (LETI)
SErvice des Microsystèmes pour l’Interaction avec le Vivant
Laboratoire Systèmes Microfluidiques et Bio-ingénierie
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down