About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Nano- and micropatterned biomineral-based materials: Orientation-specific assembly of coccoliths into arrays

Nano- and micropatterned biomineral-based materials: Orientation-specific assembly of coccoliths into arrays

Biotechnologies,nanobiology Chemistry Condensed matter physics, chemistry & nanosciences Life Sciences

Abstract

Coccoliths of coccolithophorid algae are anisotropically-shaped microparticles consisting of calcite (CaCO3) crystals with unusual morphologies arranged in complex 3D structures. Their unique micro- and nanoscale features make coccoliths attractive for various applications in nanotechnology. It is anticipated that the range of applications of coccoliths can be further extended by (bio)chemical modification and functionalization as well as possibilities for their arrangement into 2D and 3D arrays. However, methods for both aspects are still lacking.
The aim of this project is thus to develop methods for regioselective functionalization of coccoliths and their assembly into arrays. Regioselective functionalization of the margin area and central area of coccoliths will be achieved by exploitation of local differences in the composition of the insoluble organic matrix of coccoliths. The existence of local differences in the composition of biomacromolecules within this matrix has only very recently been demonstrated. In particular, we will regioselectively introduce proteins/(poly-)peptides that can serve as “anchoring points” for in vitro modifications into the insoluble organic matrix of coccoliths by genetic engineering of a coccolithophore. These engineered coccoliths form the basis for the construction of coccolith arrays. Three independent approaches for the assembly of such arrays will be pursued. The structural and physico-chemical properties of the coccolith-based magnetite-calcite hybrid material will be determined by means of a number of analytical methods.
This interdisciplinary project will benefit greatly from the complementary expertise of the binational groups. In the long term, we aim to create an advanced pool of methods to regioselectively endow coccoliths with desired properties and to develop new biomineral-based materials for nanotechnological applications.

Laboratory

Institut de Biosciences et Biotechnologies d’Aix Marseille
Service de Biologie Végétale et de Microbiologie Environnementale
Laboratoire de Bioénergétique Cellulaire
Aix-Marseille Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down