About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Nanodiamond-based porous electrodes: towards photoelectrocatalytic production of solar fuels

Nanodiamond-based porous electrodes: towards photoelectrocatalytic production of solar fuels

Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry Solar energy for energy transition Technological challenges

Abstract

Among nanoscale semiconductors, nanodiamonds (ND) have not been really considered yet for photoelectrocatalytic reactions in the energy-related field. This originates from the confusion with ideal monocrystalline diamond featuring a wide bandgap (5.5 eV) that requires a deep UV illumination to initiate photoreactivity. At the nanoscale, ND enclose native defects (sp2 carbon, chemical impurities such as nitrogen) that can create energetic states in the diamond’s bandgap decreasing the light energy needed to initiate the charge separation. In addition, the diamond electronic structure can be strongly modified (over several eV) playing on its surface terminations (oxidized, hydrogenated, aminated) which can open the door to optimized band alignments with the species to be reduced or oxidized. Combining these assets, ND becomes competitive with other semiconductors toward photoreactions. The aim of this PhD is to investigate the ability of nanodiamonds in reducing CO2 through photoelectrocatalysis. To achieve this goal, electrodes will be made from nanodiamonds with different surface chemistries (oxidized, hydrogenated and aminated), either using a conventional ink-type approach or a more innovative one that results in a porous material including nanodiamonds and a PVD-deposited matrix. Then, the (photo)electrocatalytic performances under visible illumination of these nanodiamond-based electrodes toward CO2 reduction will be investigated in terms of production rate and selectivity, in presence or not of a transition metal macrocyclic molecular co-catalyst.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Edifices Nanométriques
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down