About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   NEW PATHS TO PRODUCE NEUTRON RICH HEAVY NUCLEI

NEW PATHS TO PRODUCE NEUTRON RICH HEAVY NUCLEI

Corpuscular physics and outer space Nuclear physics

Abstract

One of the strongest research projects in recent years has emerged from a critical, unresolved question about the natural origin of nuclei heavier than iron. The closed neutron shell, N = 126, as the final waiting point in the r-process (rapid neutron capture process), plays an essential role in the formation of these nuclei. However, recent efforts to synthesize superheavy elements and explore N = 126 neutron-rich nuclei have faced significant challenges due to extremely low cross sections using traditional fusion-evaporation reactions.
These factors highlight the urgent need for alternative reaction mechanisms. One alternative has been identified in multinucleon transfer (MNT) reactions, which offer a promising route to neutron-rich heavy nuclei. The challenge is to isolate the desired nuclei from the multitude of products generated during the reaction.
We have been working on this reaction mechanism for several years, performing experiments at Argonne National Laboratory and other international laboratories.
The aim of this thesis is to analyse the data collected during the Argonne experiment (end 2023) and to propose a new experiment at the spectrometer Prisma (Legnaro National Lab) coupled with the Agata germanium detector.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique Nucléaire
Laboratoire études du noyau atomique (LENA)
Université de Paris
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down