About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Quantum device integration on Ge/SiGe heterostructures

Quantum device integration on Ge/SiGe heterostructures

Condensed matter physics, chemistry & nanosciences Mesoscopic physics New computing paradigms, circuits and technologies, incl. quantum Technological challenges

Abstract

Spin qubits in semiconductors quantum dots offer a fast scaling perspective of quantum processors by leveraging the manufacturing techniques of the microelectronics industry. To explore this approach, industrial research teams implemented qubits directly on their existing routes (e.g. FDSOI at CEA-Leti or FinFET at Intel). However, these devices suffer from an important electrostatic disorder stemming from the presence of an Si/SiO2 interface next to the qubits.
An alternative way consists in using semiconductor heterostructures based on Ge/SiGe stacks. They allow the charge confinement between crystalline interfaces, thus drastically reducing the electrostatic disorder. Besides the low effective mass of carriers in Ge allows more relaxed dimensions, while the spin-orbit coupling of holes in Ge allows spin manipulations without integration of any external control element.
The PhD thesis aims at developing a Ge/SiGe-based platform at CEA-Leti. The work will consist in fabricating test structures such as Hall bars on different substrate coupons, perform low temperature characterization and provide feedback to help optimizing the substrates quality. In parallel a 200mm route based on eBeam lithography will be set up for the fabrication of one- and two-dimensional arrays of quantum dots.

Laboratory

Département Composants Silicium (LETI)
Service des Composants pour le Calcul et la Connectivité
Laboratoire des Dispositifs Quantiques
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down