About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   RootExu-C : Plant genetic control of root exudation and microbiome assembly

RootExu-C : Plant genetic control of root exudation and microbiome assembly

Life Sciences Plant biology

Abstract

Ongoing breeding programs selected for crop varieties with high yield under favorable conditions: sufficient water supply (irrigation) and high levels of chemical fertilizers (N, P). However, increased abiotic stresses (drought, salinity, high temperatures) as well as ecological concerns demand for new traits to transition to more sustainable production systems. One approach may consist in better control and exploitation of root microbiota, which have the potential to protect their host plants from abiotic and biotic stresses, and to improve nutrition and productivity. It is assumed that plant innate immunity and root exudates scale and structure root microbiota, but exact mechanisms remain unknown. In this project, I propose to analyze “root-adhering soil” (RAS), the soil aggregated around roots, as a global proxy for shoot-to-root carbon allocation, root exudation and recruitment of exopolysaccharide-producing microbiota in Solanum lycopersicum (tomato). A respective PhD student shall analyze the RAS trait in a tomato natural variation panel towards the identification of underlying genes. Further, he/she shall directly inactivate candidate genes assumedly involved in root exudation (multiplex CRISPR/Cas). Lines with contrasting RAS phenotypes, from natural and/or induced variation, will be analyzed for microbiota recruitment and exudate composition. This will provide fundamental knowledge on the genetic control of root exudation and microbiome assembly and scaling cues. RAS may represent a valuable trait for the adaptation and performance of plants under lower input conditions, and may also facilitate enhanced storage of carbon in agricultural soils.

Laboratory

Institut de Biosciences et Biotechnologies d’Aix Marseille
Service de Biologie Végétale et de Microbiologie Environnementale
Laboratoire d’Ecologie Microbienne de la Rhizosphère et d’Environnements Extrêmes
Aix-Marseille Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down