Context
Artificial Intelligence (AI) has emerged as a major field impacting various sectors, including healthcare, automotive, robotics, and more. Hardware architectures must now meet increasingly demanding requirements in terms of computational power, low latency, and flexibility. Network-on-Chip (NoC) technology is a key enabler in addressing these challenges, providing efficient and scalable interconnections within multiprocessor systems. However, despite its benefits, designing NoCs poses significant challenges, particularly in optimizing latency, energy consumption, and scalability.
Programmable cluster architectures hold great promise for AI as they enable resource adaptation to meet the specific needs of deep learning algorithms and other compute-intensive AI applications. By combining the modularity of clusters with the advantages of NoCs, it becomes possible to design systems capable of handling ever-increasing AI workloads while ensuring maximum energy efficiency and flexibility.
Summary of the Thesis Topic
This PhD project aims to design a scalable, programmable cluster architecture based on a Network-on-Chip tailored for future AI applications. The primary objective will be to design and optimize a NoC architecture capable of meeting the high demands of AI applications in terms of intensive computing and efficient data transfer between processing clusters.
The research will focus on the following key areas:
1. NoC Architecture Design: Developing a scalable and programmable NoC to effectively connect various AI processing clusters.
2. Performance and Energy Efficiency Optimization: Defining mechanisms to optimize system latency and energy consumption based on the nature of AI workloads.
3. Cluster Flexibility and Programmability: Proposing a modular and programmable architecture that dynamically allocates resources based on the specific needs of each AI application.
4. Experimental Evaluation: Implementing and testing prototypes of the proposed architecture to validate its performance on real-world use cases, such as image classification, object detection, and real-time data processing.
The outcomes of this research may contribute to the development of cutting-edge embedded systems and AI solutions optimized for the next generation of AI applications and algorithms.
The work performed during this thesis will be presented at international conferences and scientific journals. Certain results may be patented.