About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Sitinakite materials for continuous treatment of Sr-contaminated effluents

Sitinakite materials for continuous treatment of Sr-contaminated effluents

Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications Ultra-divided matter, Physical sciences for materials


The aim of this thesis is to develop sitinakite-type materials compatible with a continuous treatment process for strontium-contaminated effluents.
Sitinakite is a poorly crystalline silico-titanate phase with ion exchange properties. In particular, the sodium atoms present in the channels of this structure are mobile and can exchange selectively with strontium ions. This means that exchange with strontium will take priority even in the presence of other competing cations from the family of alkaline earth elements, such as calcium.
However, for sorption materials to be suitable for continuous effluent treatment involving a high flow rate through the filter element, they need to be shaped. In fact, fine powders are not suitable for such continuous processes because of the clogging phenomena of the filtering elements.
Consequently, the research teams proposing this thesis topic have developed a protocol for shaping millimetre-sized sitinakite granules. This involves converting millimetre-sized TiO2 granules into sitinakite via a hydrothermal pseudomorphic transformation reaction. However, if the phase conversion works, it leads to a loss of efficiency with a consequent slowdown in the rate of exchange between sodium and strontium compared with sitinakite in powder form.
This thesis therefore proposes to adapt the transformation protocol so that the sodium - strontium exchange rates are faster, equivalent to the powder system. This will involve treating sitinkaite granules or pre-treating precursor TiO2 granules prior to processing in order to increase the specific surface area of the final materials and thus improve the accessibility of the exchange sites.
The PhD student will also analyse the effects of irradiation on the sorption properties of materials induced by the presence of radioactive Sr in the materials. In particular, this will involve finding out whether irradiation can lead to the release of strontium, for example. To this end, material irradiation campaigns will be carried out on electronic irradiators (LSI, Polytechnique), the aim of which will be to simulate the presence of a beta emitting element such as 90Sr.
The applicant profile we're looking for is based on a Master 2 and/or school of engineering student with a specialization in solid-state chemistry, particularly materials. Ideally, the candidate will have notions of the physical chemistry of interfaces. The PhD student will benefit from the expertise of the two host laboratories in the field of porous materials and nuclear decontamination. These two aspects will help the candidate in his or her post-doctoral job search and enable him or her to apply for offers in the field of decontamination, whether nuclear or in other sectors (water treatment, soil decontamination, etc.).


Institut de Chimie Séparative de Marcoule (DES)
Laboratoire des Nanomatériaux pour l’Energie & le Recyclage
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down