About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Spin-current to charge-current interconversion devices: theoretical and experimental optimization of the efficiency

Spin-current to charge-current interconversion devices: theoretical and experimental optimization of the efficiency

Condensed matter physics, chemistry & nanosciences Solid state physics, surfaces and interfaces

Abstract

The major argument for promoting the development of spin electronics is the low power dissipation. The aim of the thesis is to determine and optimize the power efficiency of these devices. We focus the study on the power dissipated by two kinds of devices. On the one hand, the devices allowing the reversal of the magnetization of a magnetic layer by a transverse spin current, namely the Spin-Orbit Torque effect (SOT), and on the other hand the devices based on topological materials.

In this context, the definition of useful power - or efficiency - is an open problem. Indeed, the thermodynamics of this type of non-equilibrium system involves cross-effects between the degrees of freedom of the electric charge carriers, those of the spin of these carriers, as well as those of the magnetization of the adjacent layer.

We have developed a variational method in order to establish the stationary state of a Hall bar and the power dissipated in a load circuit. Preliminary measurements have recently validated the prediction in the case of the anomalous Hall effect. The project aims to generalize the study to SOT and topological materials.

Laboratory

Institut rayonnement et matière de Saclay
Laboratoire des Solides Irradiés
Laboratoire des Solides Irradiés
Ecole Polytechnique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down