About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Stabilisation of Perovskite photovoltaic devices by passivation with Metal-Organic Frameworks type materials

Stabilisation of Perovskite photovoltaic devices by passivation with Metal-Organic Frameworks type materials

Condensed matter physics, chemistry & nanosciences Solar energy for energy transition Solid state physics, surfaces and interfaces Technological challenges


MOFs are a type of porous organic-inorganic hybrid material with interesting properties in terms of the passivation of defects in the perovskite and its stability, particularly versus light. For example:
- Direct effect of MOF components as passivation agents: Metal ions and organic ligands can passivate defects at the MOF/PK interface.
- Downconversion of incident radiation: Certain metals (such as europium) or ligands (with aromatic groups) can absorb high-energy radiation (typically violet/near-UV), then re-emit this energy in the form of lower-energy radiation or transmit it directly in a non-radiative manner to the perovskite by Förster resonance (or FRET). This protects the perovskite from high-energy photons, and therefore a priori improves light stability, with little energy loss.
The thesis work will focus on
- integrating MOFs into the perovskite layer, either as a surface treatment or as a mixture of suspensions
- Materials studies (in particular advanced studies using XPS and UPS)
- Favrication of single-junction devices and then tandem devices with silicon sub-cells
- Study of lifetime under illumination (continuous, cycling) with associated characterisations (electrical measurements, photoluminescence, etc.).


Département des Technologies Solaires (LITEN)
Service des Cellules PV Premium
Laboratoire des Cellules Tandem
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down