About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Stability of ablation flows in inertial confinement fusion: transient growth

Stability of ablation flows in inertial confinement fusion: transient growth

Corpuscular physics and outer space Engineering sciences Plasma physics and laser-matter interactions Thermal energy, combustion, flows


Inertial confinement fusion (ICF) aims at producing energy from thermonuclear fusion reactions between low atomic-number elements. A possible approach for reaching the high densities and temperatures needed for triggering these reactions, consists in imploding a spherical capsule, filled with a mixture of fusible elements, by means of a high energy density irradiation. This irradiation induces a violent vaporization – ablation – of the capsule outer shell that drives the implosion. The finite duration of these implosions emphasize the need for investigating possible perturbation transient growth that may dominate the flow over short-time horizons. For this project, we wish to investigate such transient growth in strongly accelerated self-similar ablation flows, with planar of spherical symmetry, which are relevant to the main stage of an implosion. This work will be carried out using a direct-adjoint method of non-modal stability theory, previously devised for weakly accelerated self-similar ablation flows in planar symmetry, that will have to be adapted to handle strongly accelerated configurations. Results could be used to setup, in a more realistic setting, `multi-physics' simulations of capsule implosions.


IP. Paris
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down