About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Study of inversion methods based on simulation and machine learning for defect characterisation in ultrasonic array imaging

Study of inversion methods based on simulation and machine learning for defect characterisation in ultrasonic array imaging

Engineering sciences Factory of the future incl. robotics and non destructive testing Instrumentation Technological challenges

Abstract

The thesis work is part of the activities of CEA-List department dedicated to Non-Destructive Testing (NDT), and aims to study simulation-based inversion methods to characterise defects from ultrasonic images, such as TFM (Total Focusing Method) or PWI (Plane Wave Imaging) images. The inversion methodology will rely on machine learning algorithms and numerical training databases generated with the CIVA software platform. A first part will study the ability of such an inversion method to characterise a defect (location, size, orientation...) without any a priori information, by exploiting the noise and reconstruction artefacts due to the use of unsuitable propagation modes. In a second part, the simulation-based inversion will be evaluated in more realistic situations where images are of poor quality due to uncertainties on the properties of the component and/or on the experimental setup. In order to reduce the generation time of the training database, and to gain in robustness and accuracy, the feasibility of inverting fast imaging (e.g.: combining PWI and fast reconstruction algorithms in the Fourier domain) will be studied, as well as the feasibility of directly inverting signals or spectra without the need to compute images. The inversion method will be experimentally evaluated with different mock-ups representative of industrial components and, at the end of the thesis, a real-time proof of concept will be demonstrated by implementing the imaging and inversion algorithms in a laboratory prototype system.

Laboratory

Département d’Instrumentation Numérique
Service Monitoring, Contrôle et Diagnostic
Laboratoire d’Acoustique pour le Contrôle et la Caractérisation
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down