About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Study of the production of martensitic stainless steel 13-4 by Laser Metal Deposition: influence of process parameters, powder characteristics and post-treatments on microstructure and mechanical properties at fracture

Study of the production of martensitic stainless steel 13-4 by Laser Metal Deposition: influence of process parameters, powder characteristics and post-treatments on microstructure and mechanical properties at fracture

Condensed matter physics, chemistry & nanosciences Ultra-divided matter, Physical sciences for materials

Abstract

Additive manufacturing processes are now widely studied for numerous applications in the nuclear industry. The aim of the studies dedicated to optimising the Laser Metal Deposition (LMD) metal additive manufacturing process for the production and shaping of a 13-4 martensitic stainless steel is to obtain a material with mechanical properties at fracture, particularly in terms of impact strength, that comply with the specifications for use. This work explores the complex relationships between the microstructural characteristics (phase present, granular structure, texture, precipitation, etc.) induced by the process and the resulting mechanical performance.
Additive manufacturing, in particular the LMD process, offers multiple advantages in terms of design flexibility and customisation of metal components. However, obtaining mechanical properties at fracture that meet specifications is a major challenge, particularly for high-temperature applications in corrosive environments.
This thesis focuses on the optimisation of the LMD process to ensure that components manufactured from 13-4 martensitic stainless steel exhibit microstructural characteristics and mechanical performance appropriate to their intended applications, with particular emphasis on impact properties. Determining the optimum process parameters, including the characteristics of the powders and associated post-treatments, the analysis of the microstructure, and the correlation between the microstructure and the mechanical properties constitute a major challenge for the complete control of this process.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de Recherche en Matériaux et procédés Avancés
Laboratoire de Technologie des Matériaux Extrêmes
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down