About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Studying inflation with quasars and galaxies in DESI

Studying inflation with quasars and galaxies in DESI

Astrophysics Corpuscular physics and outer space


Measurements of the statistical properties of the large-scale structure (LSS) of the universe provide information on the physics that generated the primordial density fluctuations. In particular, they enable us to distinguish between different models of cosmic inflation by measuring primordial non-Gaussianity (PNG), the deviation from the initial conditions of the Gaussian random field.

Our strategy for studying LLS is to use a spectroscopic survey, DESI, whose instrument was commissioned at the end of 2019. DESI will observe 40 million galaxies and quasars. Observations take place at the 4-m Mayall telescope in Arizona. In the spring of 2021, the project began a five-year period of uninterrupted observations, covering a quarter of the sky.

For this thesis project, LSS are measured with two tracers of matter: very luminous red galaxies (LRG) and quasars, very distant and very luminous objects. These two tracers enable us to cover a wide redshift range from 0.4 to 4.0.

During the first year of his/her thesis, the student will contribute to the final analysis of the first year of DESI observations. In particular, he/she will study LSS with quasars and galaxies (LRG). His/her work will also involve assessing all possible sources of bias in the selection of quasars and LRGs that could contaminate a cosmological signal. In a second phase, the student will develop a more sophisticated analysis using three-point statistics such as the bispectrum with an extended sample to the first three years of DESI observations.


Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Cosmologie (GCOSMO)
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down