About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Towards multi-physics and multi-scale modelling of pilot-scale photo-electrochemical cells for hydrogen production

Towards multi-physics and multi-scale modelling of pilot-scale photo-electrochemical cells for hydrogen production

Condensed matter physics, chemistry & nanosciences Engineering sciences Radiation-matter interactions Thermal energy, combustion, flows


The production of chemical molecules and synthetic fuel, from non-fossil resources and renewable energy, is one of the solution envisaged to face climate issues. In this context, the use of photo-electrochemical cells (PEC) solar-driven water splitting is seen as promising route for hydrogen production. Today, proofs of concept generally concern small objects (of the order of 1cm² of active surface) and operating-times limited to a few minutes or a few hours. It is therefore essential, in order to consider the rapid deployment of PECs, to be able to predict the influence of the architecture of the cell and scale-up on their performance, in terms of energy efficiency, kinetic efficiencies (volume and surface ), stability of operation and aging of materials.
The thesis is part of the development of a generic simulation tool for PECs, in support of R&D. It will be carried out in collaboration with ENGIE LabCRIGEN (CIFRE funding), )Institut Pascal (host laboratory) and CEA (ISEC, IRIG and INES).
You have a solid background in Chemical Engineering, Energy, Fluid Mechanics or Applied Mathematics, with particular attraction for modelling and simulation; you have also a strong capacity for collaborative work, and you want to contribute actively the energy transition? By choosing this thesis, you will join a multidisciplinary consortium and contribute to an active field of research, at the interface between fundamental research and industry.


Département de recherche sur les procédés pour la mine et le recyclage du combustible
Service des Technologies Durables pour le Cycle des matières
Laboratoire de développement de procédés pour le Recyclage et la Valorisation
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down