About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Ultrasensitive static/dynamic flexible force transducer

Ultrasensitive static/dynamic flexible force transducer

Emerging materials and processes for nanotechnologies and microelectronics Engineering sciences Materials and applications Technological challenges


In this thesis, the principles and challenges in the development by printing and characterisation of conformable organic piezoelectric matrices for medical use under stress will be examined. A stretchable/conformable piezoelectric sensor, produced on a stretchable substrate, will be developed with materials (PVDF-TrFE type polymer or composite). These developments will make it possible to study the feasibility of using such piezoelectric components in various fields.
The aim of the study carried out to date has been to produce a flexible piezoelectric device based on the principle of a double-sided sensor so as to eliminate the contribution of bending. This sensor must also be stiff enough to be deployed through a 3mm diameter catheter. In this context, the work carried out in this thesis will focus on the development of a flexible piezoelectric sensor capable of converting the mechanical energy of low stresses, coupled with a piezoresistive sensor capable of measuring static stresses. The use of polymers offers greater flexibility, and they are implemented in the form of thin films, making them lightweight and space-saving. In order to achieve these objectives, a dedicated sensor structure guaranteeing redundant measurement (piezoelectric and piezoresistive sensor) will be studied, produced and characterised. The sensor manufacturing process will have to be optimised to increase their efficiency. Optimisation of the architecture of the electrodes and the geometry of the active layers will be tested on a test bench in order to assess their ability to measure static and dynamic stresses simultaneously over the widest possible range of forces. At the same time, fundamental characterisations of the material will be carried out in order to establish correlations between the structure and electrical properties of the sensors.


Département des Technologies des NanoMatériaux (LITEN)
Service Composants et Surfaces Fonctionnalisées
Laboratoire Composants Organiques
Université de Lyon
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down