Moonshot robotique : jumeau numérique d’un procédé de découpe laser et mise en œuvre avec un robot auto-apprenant
Un des principaux challenges au déploiement de la robotique dans l’industrie est de proposer des robots intelligents, capables de comprendre le contexte dans lequel ils évoluent et facilement programmables sans compétences avancées en robotique et en informatique. Afin de permettre à un opérateur non expert de définir des tâches réalisées ensuite par un robot, le CEA développe différents outils : interface de programmation intuitive, apprentissage par démonstration, skill-based programming, interface avec la simulation interactive …
Lauréat de l’appel à projet « moonshot » des Missions Numériques du CEA le projet « Robot auto-apprenant » propose d’apporter des ruptures très significatives pour la robotique du futur en lien avec la simulation. Un démonstrateur intégrant ces briques technologiques est attendu sur plusieurs cas d’usages dans différents centres CEA.
Cette offre de post-doc concerne la mise en œuvre du démonstrateur CEA/DES (Direction des Energies)sur le cas d’usage de la découpe laser sous contraintes pour l'A&D au Laboratoire de Simulation et des Techniques de Démantèlement (LSTD) au CEA Marcoule.
Elaboration d’un espace d’action commun robot/humain
Ce post-doc a pour objectif d’établir par des méthodes d’intelligence artificielle (e.g. traitement du signal sur graphe), la cartographie d’une tâche industrielle réalisée par un opérateur humain, et acquises par des capteurs visuels, dans le but d’être interprétable et exploitable par un robot. Il s’inscrit dans un projet visant à concevoir un démonstrateur dans lequel un robot apprendra à reproduire par observation une tâche réalisée par un humain. La plateforme a été déployée au CEA Tech et est exploitée actuellement par un ingénieur.
L’objectif de ce post-doc consiste principalement à étudier et mettre au point un ensemble de méthodes permettant de construire une cartographie entre les actions réalisées par un opérateur humain et perçues au travers de capteurs visuels et les actions réalisées par le robot. Ces méthodes et les travaux des thèses afférentes devront ensuite être implémentées dans le démonstrateur afin de les tester expérimentalement.
De par le positionnement central du sujet de ce post-doc, sous le triple encadrement des équipes PACCE et IPI du LS2N et du CEA, vous serez amené à collaborer étroitement avec les deux doctorants déjà impliqué dans le projet. Vous devrez conceptualiser et formaliser les méthodes et représentations d’une part en synthétisant la littérature existante sur le sujet et d’autre part en établissant un cadre commun englobant les deux travaux de thèses.
Mise en place d’une plateforme d’apprentissage par démonstration adaptée au cas industriel
Ce projet a pour objectif de développer un démonstrateur intégrant les technologies à l’état de l’art et le tester sur un cas d’usage représentatif du monde industriel. Ce projet s’inscrit dans la grappe globale d’apprentissage par démonstration.
Le démonstrateur sera constitué d’un bras robotique / cobotique couplé à un/des capteurs d’acquisition (type RGBD). Ce dispositif sera positionné dans un espace constitué d’un rack / étagère contenant des objets/pièces de formes et qualités diverses (matières, densités, couleurs …) en face duquel sera disposé un prototype de convoyeur typique d’installations industrielles. L’archétype de tâche à réaliser par le démonstrateur sera de type « pick and place » où un objet devra être récupéré en étagère puis disposé sur le convoyeur.
Ce type de démonstrateur sera plus proche des conditions réelles d’utilisation que les exemples « jouets » utilisés dans le domaine académique.
Ce démonstrateur se focalisera dans un premier temps sur l’opérabilité à court terme basée sur des briques à l’état de l’art de la technologie tant matérielle que logicielle, pour un cas d’usage représentatif du monde industriel.
Il sera donc moins basé sur la modification ou l’évolution des algorithmes utilisés que sur l’adaptation des paramètres, l’ajout de connaissances a priori dépendantes du contexte permettant de réduire l’espace d’entrée, etc.
Etude et mise en œuvre d’une stratégie de perception bio-inspiré dans l’eau, application à la téléopération off-shore et à l’assistance opérateur
Depuis quelques années, le groupe Robotique Bio-inspiré de l’équipe Robotique de l’IRCCyN développe un mode de perception bio-inspiré des poissons électriques. Afin d’émuler ce sens électrique, des sondes résistives ont été utilisées à l’IRCCyN pour le pilotage d’un robot autonome sous-marin.
De son côté, au sein du Laboratoire de Robotique Interactive (LRI), le CEA LIST soutient depuis de nombreuses années une activité dans le domaine de la télérobotique à retour d’effort. L’opérateur manipule un bras esclave situé en milieu hostile via un bras maître situé en zone saine et un système informatique.
Le travail du candidat se déroulera au sein d’un projet CEA-IRCCyN se déroulant en parallèle d’un premier projet plus amont dont l’objet est de faire la preuve de concept de cette boucle électro-haptique sur un bras Cartésien transportant une sonde électrique de géométrie fixe et connue. Le post-doctorant aura à charge d’implémenter cette boucle sur un bras manipulateur "marinisé" de géométrie complexe. Pour cela, avec la co-assistance du CEA et de l’IRCCyN, il prendra en charge la préparation de ce bras et l’adaptation du capteur électrique (électrodes émettrices, réceptrice, électronique) à l’architecture considérée, ainsi que l’adaptation du contrôle/commande et de l’interface haptique à la base de la boucle électro-haptique. Outre les difficultés technologiques de cette adaptation, le candidat devra également étudier les différentes stratégies permettant d’exploiter le champ électrique sur un système multi-corps de géométrie variable.
Les validations expérimentales et la preuve de concept de ce nouveau système de téléopération off-shore seront réalisées sur des scénarii, à définir, représentatifs de l’application finale.
Conception et réalisation d’un retour d’effort par sens électrique pour la téléopération de bras sous-marins et aériens
Depuis quelques années, le groupe Robotique Bio-inspirée de l’équipe Robotique de l’IRCCyN développe un mode de perception bio-inspiré de certains poissons des eaux douces tropicales: le sens électrique. De nature active, ce sens est basé sur la perception des distorsions par l’environnement d’un champ électrique produit par le poisson. Basé sur ce principe l’Irccyn a développé, dans le contexte d’un projet Européen nommé Angels, le premier robot autonome sous-marin apte à se déplacer grâce au sens électrique. Dans l’avenir, CEA TECH et l’Irccyn veulent étendre ce premier résultat dans de multiples directions et notamment dans le contexte de la télé-opération des bras manipulateurs sous-marins et aériens avec retour haptique émulé par le sens électrique. Intégré dans le groupe de Robotique Bio-inspiré de l’IRCCYN, le post-doctorant devra contribuer au développement du sens électrique et à son usage pour la téléopération sous-marine et aérienne. Il participera à la conception et au développement de nouveaux capteurs inspirés des poissons électriques et à leur usage pour la robotique sous-marine téléopérée. Les résultats de ses travaux serviront de base au démonstrateur industriel (système de téléopération off-shore) qui doit être développé dans le cadre du projet CEA TECH / IRCCYN Robotique Bio-inspirée.
Génération de mouvements réalistes de systèmes anthropomorphes
Le sujet de s’inscrit dans le thème de l’Humain Numérique pour l’industrie manufacturière (plus précisément, pour la conception, la maintenance, la formation des opérateurs, la conception et l’ergonomie du poste de travail,…), la santé (conception des postes opératoire, la réhabilitation,…) ou l’industrie du divertissement (l’animation pour le jeu, le cinéma,…).
Partant des compétences et développements complémentaires de l’équipe Gepetto du LAAS et du CEA LIST, en termes de planification de trajectoires (HPP), de commande dynamique de mouvements des systèmes anthropomorphes, l’objectif du post doc consiste à combiner deux approches, l’une globale, traitant principalement des contraintes et caractéristiques géométriques et quasi-statiques, l’autre locale, traitant de la dynamique et prenant en compte des caractéristiques du mouvement humain (primitives motrices, minimisation de critères de coût, etc…).
Localisation et cartographie simultanée à l’aide d’une caméra RGB-D selon une méthode directe et éparse
Les récents progrès dans les méthodes de localisation d’un dispositif(smartphone, robot) par rapport à son environnement permettent d’envisager le déploiement de solutions de Réalité Augmentée et de robots autonomes. Dans ce contexte, l’intérêt des caméras RGB-D est notable puisqu’elles permettent d’obtenir directement la carte de profondeur de la scène perçue.
Dans le cadre de ce post doctorat, l’objectif sera de développer une méthode de Localisation et Cartographie Simultanée (ou SLAM pour Simultaneous Localisation and Mapping) exploitant une caméra RGB-D. Plus précisément, l’image de profondeur sera exploitée au travers d’une méthode éparse et directe, ceci afin d’obtenir une localisation robuste et précise tout en minimisant la consommation CPU et mémoire. Cette méthode sera alors combinées à la méthode dite de "SLAM Contraint à un modèle CAO" développées au laboratoire afin d’obtenir une solution finale de SLAM RGB-D Contraint à un modèle CAO.
Modélisation et Contrôle de la Fréquence et de la Tension dans des architectures GALS en présence de variabilité du process et de variations de tension et de température
L’évolution des technologies sub-microniques a induit des défis majeurs auxquels doit faire face le concepteur, à savoir, la gestion de la variabilité au sein de la puce (ou inter-puces) et la réduction de la consommation. Ces deux défis peuvent être traités par des techniques de "DVFS" (Dynamic Voltage and Frequency Scaling) : la puce est découpée en plusieurs zones de tension-fréquence à réguler compte tenu de références fixées par un superviseur qui prend en compte les contraintes de l’application et les capacités de la plateforme matérielle.
L’objectif de ce travail de post-doctorat est de revisiter les approches DVFS. Dans un premier temps, on effectuera une modélisation physique fine du système à réguler. On proposera ensuite des lois de contrôle non-linéaire qui prennent en compte les saturations des actionneurs, compte tenu d’un cahier des charges donné par des concepteurs de circuit. Les lois de contrôle devront tenir compte des contraintes d’implémentation sur une plateforme. Les performances de ces lois en asservissement et en régulation seront évaluées sur simulateur.
Le problème d’asservissement et régulation de la tension et de la fréquence est en fait intrinsèquement Multi-Entrées-Multi-Sorties (MIMO). On exploitera donc des techniques de contrôle MIMO pour répondre au cahier des charges fixé par les concepteurs de circuit.
Enfin, le contrôle de différentes zones VF est généralement piloté par un unique organe de décision. On réfléchira à des méthodologie de contrôle distribué qui prennent en compte par exemple l’état des zones voisines à la zones VF contrôlée.
Conception d’un contrôleur de vol d’un avion à propulsion électrique répartie
Le prix du carburant pour les systèmes de transport aéronautiques représente une part significative du prix de revient d’un trajet et tend à prendre de plus en plus d’importance. Par ailleurs, les nuisances acoustiques associées au bruit de la propulsion thermique au décollage est de moins en moins toléré par le voisinage des aéroports et tend à limiter le déploiement de ce type de transport, notamment pour les cours trajets (vols nationaux). Dans ce contexte, l’ONERA et le CEA se propose de réfléchir à des avions fonctionnant sur la base d’une propulsion électrique avec production d’énergie électrique à bord à partir d’hydrogène et couplée à des batteries de stockage électriques. L’objet de ce post doc n’est pas de gérer l’aspect de la production d’énergie, mais la partie concernant la propulsion électrique. En effet, la propulsion électrique pouvant réagir beaucoup plus rapidement qu’une turbine thermique et pouvant facilement être distribuée en différents point de l’avion, les degrés de liberté sont plus larges et une meilleure efficacité dans la propulsion envisageable. L’objectif de ce post doc est donc de proposer une solution de pilotage de turbines électriques fonctionnant de manière coopérative pour assurer à la fois une meilleure efficacité dans la propulsion et dans le même temps assurer le guidage de l’avion. Ce sujet fait appel à la fois à des connaissances dans les systèmes d’asservissement et les systèmes d’électronique de puissance pour gérer les transferts de puissance vers les différentes turbines électriques. Cette thèse s’appuiera sur les compétences de l’ONERA pour les aspects d’aérodynamisme, l’ONERA fournira notamment les modèles qui permettent de relier la vitesse de rotation/couple des turbines électrique à la poussé associée. Le CEA mettra à disposition ses compétences dans le domaine des capteurs, de l’électronique et de l’électronique de puissance.