Modélisation thermodynamique des oxydes complexes pour les capteurs intelligents

La recherche de matériaux plus efficaces suit un schéma qui a très peu changé au fil des ans, impliquant des phases peu automatisées de synthèse et de caractérisation. Bien que ce schéma ait prouvé sa force dans la création de bases de connaissances, il reste inefficace car il est chronophage et couvre généralement une gamme réduite de compositions. Le projet Hiway-2-mat (https://www.pepr-diadem.fr/projet/hiway-2-mat/) vise à utiliser des approches combinatoires à haut débit et à développer des configurations autonomes pour explorer les espaces de composition des matériaux d'oxyde complexes, dans le but d'accélérer la découverte de matériaux pour les capteurs intelligents. Dans ce contexte, la méthode CALPHAD est un outil précieux pour l'exploration des matériaux, car elle peut fournir des informations sur le rôle de l'état d'oxydation ou de la pression partielle de l'oxygène sur la stabilité de la phase, et sur le degré de substitution des éléments dopants dans une matrice d'oxyde. L'objectif est de calculer les diagrammes de phase d'oxydes complexes à partir des bases de données disponibles, soit pour mieux préparer les expériences combinatoires, soit pour piloter le robot autonome à la volée, en fournissant des informations supplémentaires pour la caractérisation en ligne.
Votre rôle sera de:
1)Effectuer des simulations thermodynamiques en utilisant la méthode CALPHAD et le logiciel Thermo-Calc pour prédire la gamme de stabilité d'un ensemble d'oxydes complexes (Ba/Ca/Sr)(Ti/Zr/Sn/Hf)O3 à différentes températures et pressions partielles d'oxygène. Le candidat effectuera également un examen critique des données thermodynamiques disponibles dans la littérature.
2)Inclure des éléments clés dans la base de données disponible.
3)Développer une méthode de screening rapide pour rechercher les compositions les plus prometteuses.
4)Collaborer avec l'équipe de développement de la plateforme expérimentale pour orienter les futurs essais.

Phénoménologie des interactions de plasmas en milieu liquide : application à la fabrication de matériaux pour les cibles laser

Le CEA mène des expériences de Physique sur le Laser Méga Joule mettant en œuvre des cibles constituées de matériaux de nature et géométrie adaptées à la classe d'expériences. Dans ce contexte, le CEA poursuit des développements sur la synthèse de mousses métalliques obtenues par plasma électrolytique basse tension.
Après application d'une tension suffisante entre deux électrodes plongées dans une solution aqueuse, un plasma (streamer) est généré dans le liquide. Une mousse métallique ultralégère et nano-structurée se forme à la cathode. Ce procédé permet la fabrication de matériaux métalliques mésoporeux de faible masse volumique apparente.
Deux thèses ont montré que les paramètres primaires de synthèse des mousses influencent la structure des mousses. Il s'avère que la réduction des cations métalliques s'effectue au sein du plasma ce qui explique que la cristallisation de la mousse reproduit la morphologie du streamer. Le sujet consiste à modéliser les différentes étapes physiques du procédé et confronter ces résultats numériques aux caractérisations qui seront effectuées par GDOES, caméra rapide,etc, à l'Institut Jean Lamour de Nancy.

Modélisation thermodynamique du revêtement protecteur pour des cellules d'électrolyse à oxyde solide

Dans la poursuite d'un avenir énergétique durable, les cellules d'électrolyse à oxyde solide (SOEC) sont une technologie très prometteuse pour produire de l'hydrogène décarboné par électrolyse de l'eau à haute température (entre 500 et 850°C). Bien qu'une température de fonctionnement élevée offre de nombreux avantages (haut rendement et bas coût), elle peut entraîner une dégradation des interconnecteurs. Des revêtements sont proposés pour améliorer les performances à long terme des interconnecteurs et réduire les problèmes de corrosion. L'objectif est de trouver les meilleurs candidats au revêtement avec une stabilité thermodynamique élevée, une conductivité électrique élevée et une faible diffusion des cations. Dans ce contexte, vous rejoindrez l'équipe LM2T au sein du projet DIADEM (https://www.diadem.cnrs.fr/2023/03/29/atherm_coat/) pour les matériaux innovants.
Votre rôle consistera à :
1)Effectuer des simulations thermodynamiques en utilisant la méthode CALPHAD et le logiciel Thermo-Calc pour prédire la gamme de stabilité d'un ensemble de candidats revêtements (par exemple, oxydes spinelles et pérovskites) et les réactions de décomposition possibles dans différentes conditions atmosphériques (température et pression partielle d'oxygène). Au cours de cette étape, le candidat effectuera également un examen critique des données thermodynamiques disponibles dans la littérature.
2)Coupler les informations obtenues à partir des calculs CALPHAD et des bases de données thermodynamiques pour estimer l'expansion thermique et la conductivité électrique des compositions les plus prometteuses.
Le candidat travaillera en étroite collaboration avec l'équipe expérimentale (ISAS/LECNA et UMR-IPV) produisant les revêtements afin de guider les futurs essais et d'adapter la méthode pour mieux répondre aux besoins de production à grande échelle.

Nouveaux Catalyseurs Carbonés Durables pour PEMFC

Le but du projet est de développer et de tester pour l’ORR, un matériau à base d’aérogel de graphène mésoporeux et graphitisé, présentant une structuration hiérarchique permettant un meilleur transfert de matière et des domaines graphitiques augmentant la durabilité et la conductivité du matériau final, et fonctionnalisé par des Pt-NPs.
Ces structures de graphène expansé développées à l’IRIG/SyMMES présentent des chimies de surfaces, des micro/méso/macro porosités dépendantes des méthodes de synthèses, fonctionnalisation et de séchage employées. L’objectif sera d’augmenter leur degré de graphitisation, et ensuite de déposer par voie chimique les Pt-NPs. Les propriétés électrocatalytiques de ces matériaux seront ensuite testées.
La caractérisation méso-structurale avancée par diffusion de rayonnement de ces matériaux permettra de corréler propriétés structurales et propriétés catalytiques de ces nouveaux électro-catalyseurs en système pile à combustible. Ce gain de connaissance passera par des analyses ex-situ, mais aussi operando.

Simulation HPC des propriétés mécaniques des électrodes dans les batteries Li-ion

Li-ion batteries are complex multi-physics systems in which chemical reactions, transport phenomena, and mechanical deformation are strongly coupled. The battery electrodes are composed of micrometric granular materials (the microstructure) where the lithium can insert and disinsert, a process that creates internal mechanical stress and strain in the materials and subsequent volumic changes. While it is currently observed that the coupling between electrochemical reactions and mechanical deformation at the microstructure level strongly impacts the battery performances, lifespan and safety, the origin of this impact is poorly understood. The global objective of this position is to better understand the coupling between mechanical deformations of the microstructure and the local conditions of lithium transport in the electrode. The study should lead to practical applications such as recommendation on the electrode design to increase life capability of Li-ion batteries.

Rôle des conteneurs métalliques sur l'altération des verres de confinement de déchets de haute activité en conditions de stockage géologique : interactions verre-fer en réacteurs étanches à l’hydrogène .

Les déchets vitrifiés issus du retraitement des combustibles des centrales nucléaires, ainsi que leurs conteneurs et surconteneurs en acier, sont destinés à être stockés définitivement en couche géologique profonde. L'eau sera ainsi le vecteur de l'altération du verre et de la migration potentielle des éléments radioactifs. Le concept de stockage le plus avancé à ce jour prévoit que le colis de verre soit protégé pendant la phase de décroissance thermique de l'interaction avec l'eau par un surconteneur en acier non allié. Cependant, qu'il soit sous forme de fer métallique ou de produit de corrosion des aciers (oxydes, carbonates, sulfures), le fer joue un rôle significatif dans l'altération du verre.
L'objectif de ce travail est de comprendre et de quantifier les mécanismes de l'interaction verre-fer afin de renforcer la robustesse des modèles opérationnels de performance des colis de déchets utilisés pour les calculs de sûreté en situation de stockage. À cet effet, un banc de dix réacteurs instrumentés étanches à l'hydrogène a été développé au laboratoire. Il a permis la mise en œuvre d'une première série d'expériences longues de plusieurs mois qui ont concerné un verre modèle non radioactif et un carbonate de fer comme source de fer. L'objectif sera de mettre en œuvre ces expériences d'interaction en utilisant cette fois du fer métallique, plus réactif, de caractériser les solutions prélevées et les produits d'altération néoformés, avant d'interpréter les expériences à l'aide des outils de modélisation disponibles au laboratoire.

Comportement de matériaux en sels fondus

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour les centrales solaires ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
La plupart des alliages commerciaux, qu’ils soient à base de nickel ou à base de fer, semblent se dégrader très rapidement dans ces milieux fondus. Il est donc nécessaire d’élargir le champs d’expérimentation à des matériaux plus innovants. Aussi un screening de matériaux est prévu pour sélectionner les meilleures nuances de matériaux.
Après sélection des matériaux les plus intéressants, une étude des mécanismes de corrosion est prévue, via des analyses MEB, DRX, SDL, ICP etc, des techniques électrochimiques et l’utilisation de logiciels thermodynamiques de type HSC et Factsage.
L’objectif du sujet post doctoral proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en l’étude intégrale du comportement de divers matériaux. Par intégrale, il est ici entendu depuis la préparation d’éprouvette à la caractérisation des produits de corrosion. Cette thématique revêt un haut caractère expérimental et de compréhension des mécanismes de corrosion. Ce sujet s’inscrit dans le cadre d’un projet regroupant des industriels à la pointe du nucléaire français (EDF, Framatome, Orano). Les résultats obtenus seront ainsi susceptibles d’être présentés aux différents partenaires.

Développement d'un procédé de croissance cristalline

Dans le cadre de la réalisation de composants optiques de grandes dimensions pour le Laser MégaJoule, il est nécessaire d'étudier la croissance des cristaux de DKDP (KDP deutéré). Ils sont traditionnellement produits par croissance lente (la durée de croissance dépasse deux ans). Mais le laboratoire propose ici d'étudier une méthode rapide de croissance réduisant le délai de fabrication à quelques mois.

Amélioration par calculs thermodynamiques des modèles de physico-chimie pour le joint oxyde-gaine et la réaction oxyde-gaine dans le code de performance GERMINAL

Ce sujet de post-doctorat s’inscrit dans le cadre des études sur le comportement physico-chimique en conditions d’irradiation du combustible (U,Pu)O2 envisagé pour alimenter les réacteurs nucléaires de 4ème génération. En effet, ce type de combustible est le siège de deux phénomènes spécifiques qui peuvent affecter son comportement :
- la formation d’un JOG (Joint Oxyde-Gaine), couche de composés de produits de fission localisée entre la surface externe de la pastille et la face interne de la gaine ;
- la ROG (Réaction Oxyde-Gaine), qui conduit à la formation d’une couche de corrosion interne de la gaine composée de produits de fission et des éléments constitutifs de l’acier de gainage.
L’objectif du travail consiste à améliorer les modèles de physico-chimie pour la formation du JOG et pour la ROG dans GERMINAL, outil de calcul scientifique (OCS) dédié au comportement thermo-mécanique et physico-chimique du combustible des réacteurs à neutrons rapides en conditions d’irradiation standards et incidentelles. Pour ce faire, le candidat travaillera sur le développement du schéma de calcul GERMINAL en mode intégré qui fait appel au composant de thermochimie OpenCalphad et sur la comparaison de résultats de calculs d’épaisseurs de JOG et de corrosion interne de gaine aux observations expérimentales disponibles pour certaines expériences d’irradiations. Des calculs thermodynamiques complémentaires seront réalisés en mode autonome avec la TAF- ID (Thermodynamics of Advanced Fuels - International Database, pour analyser la thermochimie JOG/ROG en fonction de paramètres d’intérêt.
Ce travail sera réalisé en collaboration avec un laboratoire spécialisé en modélisation thermodynamique, en charge du projet de la TAFID. Le candidat aura ainsi la possibilité de discuter sur ces résultats avec des partenaires étrangers dans un cadre collaboratif. Qui plus est, il pourra valoriser son travail au travers de publications et de présentations à des conférences.

Mise en œuvre de capteurs permettant le suivi en ligne de la corrosion des aciers inoxydables en milieu acide nitrique chaud et concentré

La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente. Certaines installations de l’usine de la Hague devront d’ailleurs être remplacées très prochainement. Dans ce contexte, il est important pour l’industriel de développer des capteurs, résistants à l’acide nitrique concentré (˜ 2,5 mol/L) et à la température (de l’ambiante à 130 °C), permettant de suivre la corrosion en ligne.
L’objectif de ce travail est de fabriquer un capteur permettant de détecter la corrosion de l’acier.
Les challenges de ce sujet de post-doc sont essentiellement technologiques puisqu’il s’agira de développer ou d’utiliser des matériaux adaptés à des milieux acides nitriques concentrés et chauds.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée.

Top