Etude thermochimique et thermodynamique des sels fondus chlorures

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour le stockage d’énergie ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
L’objectif du sujet de post-doctorat proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en une étude approfondie des propriétés chimiques de différents chlorures fondus : le sel ternaire de base (NaCl-MgCl2-CeCl3) mais également celles des potentiels produits de corrosion/ de fission/ d’activation (MxCly avec M=Cr, Fe, Te, Nd, Ni, Mo,…). Les coefficients d’activités et les limites de solubilité de ces éléments métalliques seront déterminés à l’aide de différentes techniques telles que l’électrochimie et la spectrométrie de masse en cellule d’effusion de Knudsen. Cette étude pourra être complétée, en fonction des besoins, par la détermination des températures de transition de phase et des capacités thermiques en utilisant la calorimétrie à balayage différentiel

Development d'électrolytes innovants pour les batteries Na-ion à forte puissance

Le post-doc s'inscrit dans le cadre du projet PEPR Battery Hipohybat. Il vise à développer des batteries Na-ion de forte puissance en étroite collaboration avec des partenaires académiques tels que le Collège de France et l'IS2M. La conductivité des ions Na+ au cœur de l'électrolyte, ainsi qu'à l'interface électrode-électrolyte (EEI), sont les deux critères majeurs qui doivent être optimisés pour permettre le développement de cellules Na-ion à charge rapide.

La première stratégie pour augmenter la conductivité globale consistera à utiliser des co-solvants moins visqueux, tels que les éthers ou les nitriles. Cependant, ces solvants présentent une mauvaise stabilité électrochimique. Par conséquent, dans un premier temps, l'impact de leur ajout dans différentes proportions sera étudié pour (i) déterminer leurs fenêtres de stabilité électrochimique et (ii) analyser leur comportement de solvatation/désolvatation, ce qui est essentiel pour leurs tenues en puissance. Les contreparties fluorées des co-solvants les plus prometteurs seront également étudiées pour améliorer la stabilité en oxydation et permettre la formation d'une interphase solide electrolyte stable à l'électrode négative.

La deuxième approche se concentrera sur l'identification des additifs qui conduisent à des interphases « non résistives ». Des additifs commerciaux et des additifs synthétisés en interne seront étudiés à cette fin. En ajustant les trois composants de l'électrolyte ensemble, de nouvelles formulations seront développées pour atteindre un meilleur compromis entre la cinétique rapide des ions Na?.

Elaboration et caractérisation d'un composite oxyde/oxyde

Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un CMC oxyde/oxyde à matrice faible possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Cette étude se fera en collaboration avec plusieurs laboratoires du CEA Le Ripault

Rôle des conteneurs métalliques sur l'altération des verres de confinement de déchets de haute activité en conditions de stockage géologique : interactions verre-fer en réacteurs étanches à l’hydrogène .

Les déchets vitrifiés issus du retraitement des combustibles des centrales nucléaires, ainsi que leurs conteneurs et surconteneurs en acier, sont destinés à être stockés définitivement en couche géologique profonde. L'eau sera ainsi le vecteur de l'altération du verre et de la migration potentielle des éléments radioactifs. Le concept de stockage le plus avancé à ce jour prévoit que le colis de verre soit protégé pendant la phase de décroissance thermique de l'interaction avec l'eau par un surconteneur en acier non allié. Cependant, qu'il soit sous forme de fer métallique ou de produit de corrosion des aciers (oxydes, carbonates, sulfures), le fer joue un rôle significatif dans l'altération du verre.
L'objectif de ce travail est de comprendre et de quantifier les mécanismes de l'interaction verre-fer afin de renforcer la robustesse des modèles opérationnels de performance des colis de déchets utilisés pour les calculs de sûreté en situation de stockage. À cet effet, un banc de dix réacteurs instrumentés étanches à l'hydrogène a été développé au laboratoire. Il a permis la mise en œuvre d'une première série d'expériences longues de plusieurs mois qui ont concerné un verre modèle non radioactif et un carbonate de fer comme source de fer. L'objectif sera de mettre en œuvre ces expériences d'interaction en utilisant cette fois du fer métallique, plus réactif, de caractériser les solutions prélevées et les produits d'altération néoformés, avant d'interpréter les expériences à l'aide des outils de modélisation disponibles au laboratoire.

Comportement de matériaux en sels fondus

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour les centrales solaires ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
La plupart des alliages commerciaux, qu’ils soient à base de nickel ou à base de fer, semblent se dégrader très rapidement dans ces milieux fondus. Il est donc nécessaire d’élargir le champs d’expérimentation à des matériaux plus innovants. Aussi un screening de matériaux est prévu pour sélectionner les meilleures nuances de matériaux.
Après sélection des matériaux les plus intéressants, une étude des mécanismes de corrosion est prévue, via des analyses MEB, DRX, SDL, ICP etc, des techniques électrochimiques et l’utilisation de logiciels thermodynamiques de type HSC et Factsage.
L’objectif du sujet post doctoral proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en l’étude intégrale du comportement de divers matériaux. Par intégrale, il est ici entendu depuis la préparation d’éprouvette à la caractérisation des produits de corrosion. Cette thématique revêt un haut caractère expérimental et de compréhension des mécanismes de corrosion. Ce sujet s’inscrit dans le cadre d’un projet regroupant des industriels à la pointe du nucléaire français (EDF, Framatome, Orano). Les résultats obtenus seront ainsi susceptibles d’être présentés aux différents partenaires.

Développement d'un procédé de croissance cristalline

Dans le cadre de la réalisation de composants optiques de grandes dimensions pour le Laser MégaJoule, il est nécessaire d'étudier la croissance des cristaux de DKDP (KDP deutéré). Ils sont traditionnellement produits par croissance lente (la durée de croissance dépasse deux ans). Mais le laboratoire propose ici d'étudier une méthode rapide de croissance réduisant le délai de fabrication à quelques mois.

Mise en œuvre de capteurs permettant le suivi en ligne de la corrosion des aciers inoxydables en milieu acide nitrique chaud et concentré

La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente. Certaines installations de l’usine de la Hague devront d’ailleurs être remplacées très prochainement. Dans ce contexte, il est important pour l’industriel de développer des capteurs, résistants à l’acide nitrique concentré (˜ 2,5 mol/L) et à la température (de l’ambiante à 130 °C), permettant de suivre la corrosion en ligne.
L’objectif de ce travail est de fabriquer un capteur permettant de détecter la corrosion de l’acier.
Les challenges de ce sujet de post-doc sont essentiellement technologiques puisqu’il s’agira de développer ou d’utiliser des matériaux adaptés à des milieux acides nitriques concentrés et chauds.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée.

Phénoménologie des interactions de plasmas en milieu liquide : application à la fabrication de matériaux pour les cibles laser

Le CEA mène des expériences de Physique sur le Laser Méga Joule mettant en œuvre des cibles constituées de matériaux de nature et géométrie adaptées à la classe d'expériences. Dans ce contexte, le CEA poursuit des développements sur la synthèse de mousses métalliques obtenues par plasma électrolytique basse tension.
Après application d'une tension suffisante entre deux électrodes plongées dans une solution aqueuse, un plasma (streamer) est généré dans le liquide. Une mousse métallique ultralégère et nano-structurée se forme à la cathode. Ce procédé permet la fabrication de matériaux métalliques mésoporeux de faible masse volumique apparente.
Deux thèses ont montré que les paramètres primaires de synthèse des mousses influencent la structure des mousses. Il s'avère que la réduction des cations métalliques s'effectue au sein du plasma ce qui explique que la cristallisation de la mousse reproduit la morphologie du streamer. Le sujet consiste à modéliser les différentes étapes physiques du procédé et confronter ces résultats numériques aux caractérisations qui seront effectuées par GDOES, caméra rapide,etc, à l'Institut Jean Lamour de Nancy.

Développement de capteur optique in-situ et operando appliqué aux batteries Li-ion

Le développement des batteries Li-ion présente une forte croissance depuis une dizaine d’années. L’amélioration des performances, de la sécurité et de la durabilité, sont les axes principaux de recherche dans le domaine. Les mécanismes mis en jeux dans le fonctionnement et le vieillissement sont complexes et leur compréhension nécessite des mesures operando et in situ aux différentes échelles du nano au macroscopique. Le CEA s’est donné comme objectif, à travers un projet de recherche, de développer une sonde locale optique pour la mesure in situ et operando des paramètres physiques (température, déformations mécaniques) et chimiques (concentration locale en ion lithium) lors du fonctionnement d’une batterie Li-Ion. En intégrant une équipe pluridisciplinaire, le/la candidat(e) participera dans un premier temps au développement des sondes optiques et leurs intégrations sur des fibres optiques : à savoir la synthèse des sondes optiques et chimiques, leurs intégrations à la surface de fibres optiques et leurs caractérisations. Le/la candidat(e) participera également à la réalisation du montage optique et aux campagnes d’essais. Les capteurs développés seront intégrés à des cellules Li-ion et testés sous différentes conditions afin de tester l’efficacité du capteur développé et établir une première preuve de concept.

Electrodes négatives nanostructurées pour batteries magnésium-ion

Le sujet s’inscrit dans un projet ANR portant sur le développement d’électrodes négatives pour les accumulateurs électrochimiques magnésium (Mg)-ion. Le magnésium apparaît comme une excellente alternative au lithium en raison de sa forte capacité spécifique, son faible coût, son abondance sur Terre et sa faible réactivité. Cependant, les électrolytes conventionnels interagissent fortement avec le magnésium métallique pour former une couche de surface bloquante à la surface du Mg métallique, inhibant les réactions électrochimiques réversibles. Une solution intéressante pour pallier à ce problème est le remplacement de l’électrode en Mg métallique par un matériau compatible avec des solvants et solutions électrolytiques présentant de larges fenêtres de stabilité électrochimique. Les composés d’alliages avec le Mg possèdent une stabilité appropriée dans les électrolytes classiques, des potentiels légèrement plus élevés que le Mg métallique pur mais des capacités spécifiques plus faibles. Dans le cadre d’un projet ANR, le laboratoire LEEL développe de nouveaux composés d’alliage pour ces batteries et cherche à les nanostructurer afin de résoudre les problèmes d’expansion volumique et de diffusion lente des ions lors de l’alliage avec le Mg.
Dans ce projet, le/la post-doctorant(e) sera en charge dans un premier temps de la compréhension fondamentale de la réactivité vis-à-vis des électrolytes des alliages développés au laboratoire via notamment des mesures par impédance et XPS. Dans un deuxième temps, il s’agira d’optimiser les formulations d’électrode et d’électrolyte via la comparaison systématique des performances en demi-cellule. Finalement, des cellules complètes Mg-ion seront réalisées avec les meilleurs couples électrode/électrolyte.

Top