Conception de Machines d'Ising basées sur des réseaux d'oscillateurs spintroniques couplés par circuits CMOS
Le nombre et la complexité des tâches de calculs nécessaires au développement de nos sociétés basées sur l’information et la communication sont de plus en plus importants et pose un problème prégnant en besoin énergétique. Il est ainsi indispensable de proposer de nouvelles architectures matérielles de calculateurs permettant d’améliorer drastiquement leur efficacité énergétique.
Le postdoc contribuera à la réalisation de Machines d’Ising qui sont des architectures de calcul innovantes, inspirées du monde vivant et de la physique et qui permettent de résoudre des problèmes complexes d’optimisation. Dans le cadre du projet ANR SpinIM, le postdoc contribuera à la démonstration d’une machine d’Ising basée sur le couplage électrique de nano-oscillateurs à transfert de spin (Spin Torque Nano Oscillators, STNO). En particulier il aura pour rôle de concevoir la puce CMOS réalisant le couplage paramétrable du réseau d’oscillateurs. Son rôle couvrira la modélisation Verilog A du STNO en se basant sur l’expérience de Spintec et la conception du circuit CMOS de couplage au niveau schématique et son implémentation physique (layout). Le post doc assurera la validation du circuit CMOS en laboratoire et participera à la validation fonctionnelle de la machine d’Ising sur des tâches de calcul d’optimisation. Le post doc se déroulera au sein du laboratoire LGECA qui acquis une expérience dans la co-conception spintronique-CMOS.
Accélérateurs photoniques : L'innovation au service des simulations quantiques
Les circuits photoniques, processeurs spécialisés à faible consommation d'énergie, apparaissent comme l'un des technologies plus prometteuses pour accélérer l'exécution d'algorithmes complexes dans les domaines de l'apprentissage automatique et du calcul scientifique tout en gardant une basse dissipation thermique.
Le succès de la simulation de systèmes quantiques et de la mise en œuvre d'algorithmes de simulation inspirés du quantique sur des unités photoniques laisse entrevoir le potentiel de ces accélérateurs pour faire progresser les capacités de calcul dans les domaines de la chimie computationnelle et la science de matériaux.
Le but de ce projet est d'intégrer les technologies photoniques aux réseaux neuronaux et tensoriels, en repoussant les limites des simulations quantiques et des dispositifs classiques. Cette orientation est prometteuse pour l'avenir de l'innovation algorithmique spécialisée et accélérée par le matériel.
La recherche sera axée sur l'adaptation des algorithmes aux dispositifs photoniques, l'optimisation de la consommation d'énergie et le développement de nouveaux algorithmes inspirés par les spécificités du matériel.
Optimisation des interfaces Li métal/électrolyte pour les nouvelles générations d’accumulateur tout solide
Le CEA Tech Nouvelle-Aquitaine, créé en 2013, a mis en place, depuis plus de deux ans, un nouveau laboratoire sur le développement de matériaux et sur le criblage haut débit pour accélérer la découverte de matériaux pour les nouvelles générations d’accumulateurs au Li. Pour cela, le CEA Tech Nouvelle-Aquitaine a acquis différents équipements de dépôt sous vide (par pulvérisation, évaporation et couche atomique) intégrés en boite à gants et différents outils de caractérisations automatisées (MEB-EDX, profilomètre, DRX, LIBS et microscope confocal à venir).
L’interface entre le Li métal et l’électrolyte constituent l’un des principaux challenges à surmonter pour les nouvelles générations d’accumulateurs tout solide. Les réactions de décompositions à l’interface associées à un processus de dépôt/retrait des ions Li inhomogènes conduisent à une fin de vie prématurée des cellules. L’une des voies explorées pour la stabiliser est d’utiliser une couche de protection qui doit présenter une multitude de propriétés physico-chimiques. Dans ce contexte, ce projet interne CEA a pour objectif de mettre en place une méthodologie de synthèse combinatoire associée à de la caractérisation « haut-débit » pour accélérer la découverte de nouvelles couches de protection à l’interface Li métal/électrolyte.
Nous recherchons un(e) excellent(e) candidat(e) qui sera en charge de mettre en place toute la méthodologie, de la synthèse jusqu’aux caractérisations physico-chimiques et électrochimiques des matériaux. Elle/il aura à sa disposition des nouvelles infrastructures à l’état de l’art et collaborera avec d’autres laboratoires du CEA localisés au LITEN (Grenoble)
Accélération GPU d’un code de transport déterministe DSN 3D en neutronique.
Dans le cadre des Programmes Transversaux de Compétences (PTC), les équipes du DES/ISAS/DM2S et celles du CEA-DIF montent une collaboration sur le portage GPU de leurs codes de transport déterministe en neutronique.
D’un côté, les équipe du DES/ISAS/DM2S sont en charge du développement et de la prospective sur les codes de calcul de neutronique déterministe pour la physique des réacteurs, en particulier le code APOLLO3®. De l’autre, le laboratoire de neutronique du CEA-DIF est impliqué dans le développement des codes de neutronique déterministe utilisés dans le cadre du programme Simulation.
Les deux unités cherchent aujourd’hui à préparer l’arrivée d’une nouvelle génération de supercalculateurs massivement dotés en GPU. Elles entament simultanément des études de faisabilité et de prospective sur cette thématique. Parce que les problématiques à étudier, la démarche mise en œuvre et les conclusions qui en seront tirées peuvent largement être mutualisées, il a été identifié un fort intérêt pour créer des synergies entre les deux unités. Ces synergies passent par la mise en place d’échanges réguliers et ont abouti à l’ouverture d’un poste de post-doctorat commun. Ce poste sera accueilli par les équipes du SERMA au CEA Saclay, mais constituera l’interface privilégiée entre les deux unités.
Le sujet de post-doctorat a pour objectif d’étudier le portage d’un code-jouet de neutronique déterministe DSN3D sur GPU.
Il s’appuie sur les expériences de portage déjà réalisées dans les deux unités d’accueil sur la base d’approches complémentaires : une approche haut-niveau est choisie côté DES au travers de la plate-forme Kokkos, tandis qu’une approche bas-niveau en langage Cuda est retenue côté CEA-DIF.
Production d’hydrogène et d’ammoniac à partir d’un champ éolien offshore
Depuis 2013, le CEA Tech met progressivement en place des Plates-formes régionales de transfert technologique (PRTT), avec l’appui des collectivités territoriales pour répondre spécifiquement aux besoins d’innovation du tissu industriel régional, avec un rôle complémentaire de celui des acteurs scientifiques et économiques en place. Ce projet s’inscrit dans la thématique d’innovation «marinisation des systèmes énergétiques » développé au sein de la PRTT des Pays de la Loire (DPLL) qui a notamment pour but de contribuer à définir des architectures de conversion énergétiques innovantes prenant en compte les contraintes environnementales et d’usages en milieu maritime. Ces travaux s’appuient sur un fort background du LITEN (Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux) en outils de modélisation et d’optimisation de chaines énergétiques multi-physiques et sur une expertise croissante de la PRTT sur l’exploitation et l’adaptation de ces outils aux contraintes maritimes.
Modélisation thermodynamique des oxydes complexes pour les capteurs intelligents
La recherche de matériaux plus efficaces suit un schéma qui a très peu changé au fil des ans, impliquant des phases peu automatisées de synthèse et de caractérisation. Bien que ce schéma ait prouvé sa force dans la création de bases de connaissances, il reste inefficace car il est chronophage et couvre généralement une gamme réduite de compositions. Le projet Hiway-2-mat (https://www.pepr-diadem.fr/projet/hiway-2-mat/) vise à utiliser des approches combinatoires à haut débit et à développer des configurations autonomes pour explorer les espaces de composition des matériaux d'oxyde complexes, dans le but d'accélérer la découverte de matériaux pour les capteurs intelligents. Dans ce contexte, la méthode CALPHAD est un outil précieux pour l'exploration des matériaux, car elle peut fournir des informations sur le rôle de l'état d'oxydation ou de la pression partielle de l'oxygène sur la stabilité de la phase, et sur le degré de substitution des éléments dopants dans une matrice d'oxyde. L'objectif est de calculer les diagrammes de phase d'oxydes complexes à partir des bases de données disponibles, soit pour mieux préparer les expériences combinatoires, soit pour piloter le robot autonome à la volée, en fournissant des informations supplémentaires pour la caractérisation en ligne.
Votre rôle sera de:
1)Effectuer des simulations thermodynamiques en utilisant la méthode CALPHAD et le logiciel Thermo-Calc pour prédire la gamme de stabilité d'un ensemble d'oxydes complexes (Ba/Ca/Sr)(Ti/Zr/Sn/Hf)O3 à différentes températures et pressions partielles d'oxygène. Le candidat effectuera également un examen critique des données thermodynamiques disponibles dans la littérature.
2)Inclure des éléments clés dans la base de données disponible.
3)Développer une méthode de screening rapide pour rechercher les compositions les plus prometteuses.
4)Collaborer avec l'équipe de développement de la plateforme expérimentale pour orienter les futurs essais.