Propriétés thermiques de structures 3D en nitrure d'Aluminium dédiées au packaging électronique
Le postdoc de 12 mois s'inscrit dans le projet global 3DNAMIC, financé par la région Occitanie et associant la plateforme Matériaux du département DRTDOCC et le laboratoire Laplace. Une thèse a démarrée en décembre 2024 visant "l'Etude et la caractérisation des céramiques 3D en nitrure d'aluminium pour le packaging et la gestion thermiques de composants électroniques.".
Le postdoc doit débuter en septembre 2026 avec comme objectifs principaux:
Objectif 1 : Réaliser une analyse comparative des propriétés thermiques des céramiques produites par des éléments AF et sur des structures modèles à l'aide de différents matériaux disponibles dans la plateforme matériaux du CEA.
Objectif 2: Proposer, qualifier et valider, numériquement puis expérimentalement, des structures de dissipation thermique pour les céramiques obtenues par FA dans le cadre du projet 3DNAMIC.
Etude d'un système de stockage K-ion bas coût : Electrolyte, Sécurité et prototypage
Le projet UPBEAT (France 2030) vise à développer une technologie potassium-ion bas coût et exempte de matériaux critiques et capable de fournir les performances de cellules Li-ion de type LiFePO4. Le travail proposé au post-doctorant s'inscrit dans cette optique : il consistera à développer des électrolytes liquides organiques optimisés pour ce nouveau système (Blanc de Prusse vs. Graphite), en étudiant les sels, les solvants et les additifs les plus prometteurs, tout en conservant les objectifs de coût et de durabilité. Les solutions proposées (avec et sans fluor) seront formulées, caractérisées et testées électrochimiquement dans des cellules complètes (piles boutons et sachets souples incluant une optimisation des composants) pour mesurer, entre autres, leurs efficacités sur la durée de vie et les réponses en puissance. La compréhension des effets des différents composants sera amenée par des mesures operando et des caractérisations post-mortem. Les systèmes qui répondront le mieux aux exigences du projet feront également l'objet d'essais abusifs permettant de juger de la sécurité du système final.
Suivi in situ 4D de l'évolution microstructurale dans des simulations atomistiques
Les progrès exponentiels du calcul haute performance ont permis le développement de simulations atomistiques à très grande échelle, capables de modéliser des systèmes contenant des milliards, voire des milliers de milliards d’atomes. Cependant, ces simulations génèrent des volumes de données colossaux, rendant le stockage et le post-traitement classiques de plus en plus coûteux et limitants. L’analyse in situ, réalisée directement pendant la simulation, apparaît alors comme une solution essentielle pour réduire le volume de données enregistrées, en ne conservant que l’information pertinente.
Dans ce contexte, le suivi 4D (espace et temps) de l’évolution microstructurale des matériaux soumis à des conditions extrêmes constitue un enjeu scientifique majeur. Les simulations atomistiques offrent une résolution spatiale permettant l’observation détaillée des défauts cristallins tels que les dislocations, le maclage, les lacunes et les pores, qui jouent un rôle clé dans les transformations de phase, la plasticité, la fusion/solidification et l’endommagement des matériaux. Le suivi temporel de ces structures permet d’analyser leurs mécanismes de formation, d’évolution et d’interaction, ainsi que leurs corrélations spatiales et temporelles.
Ce travail s’appuie sur la plateforme de calcul exaNBody et sur une méthode de clustering in situ développée dans le code ExaStamp, basée sur la projection des données atomiques sur une grille eulérienne 3D et leur traitement en temps réel. L’objectif est d’étendre cette approche à une dimension temporelle complète afin de suivre l’évolution des clusters en 4D. Cette extension permettra une analyse dynamique par graphes, offrant un accès aux propriétés temporelles des structures, à leurs trajectoires et à leurs comportements collectifs. À terme, ces avancées contribueront à améliorer la compréhension des mécanismes microscopiques hors équilibre et à développer des modèles prédictifs plus précis en science des matériaux.
Simulation d'effondrements de terrain et des vagues associées par un code 3D
Jusqu’à présent, les tsunamis générés par des effondrements de terrain sous-marins étaient modélisés au CEA par un code d’ondes longues 2D (Avalanche) adapté alors aux moyens de calcul mais qui, aujourd’hui, semble obsolète dans la littérature. Un premier post-doctorat (2023-2025) a montré que l’outil 3D OpenFoam permettait de simuler avec précision un effondrement de terrain et les vagues associées dans la zone de génération. Au cours de ce post-doctorat, un couplage entre le code CEA de propagation "2D" (Taitoko) et le code 3D a été mis au point de façon à propager les vagues à longue distance. Les travaux effectués seront poursuivis. Le premier objectif sera de se familiariser avec les outils mis au point et de publier le travail effectué sur l’effondrement de 80 Mm3 qui s’est produit en 1979 à Mururoa. L'objectif principal est ensuite de réaliser des simulations d’effondrements potentiels en zone Nord, sachant que la principale difficulté est de définir la géométrie de ces effondrements potentiels. La propagation des vagues sur de longues distances est simulée par un code tsunami "2D" couplé au code OpenFoam.
Outils et méthodes de diagnostic pour la réutilisation des composants électroniques
Le Laboratoire Autonomie et Intégration de Capteurs (LAIC) du CEA-Leti a pour mission principale le développement de systèmes de capteurs pour la digitalisation des systèmes. Les activités de l’équipe sont à l’interface du hardware (électronique, optronique, semi-conducteurs), du software (intelligence artificielle, traitement du signal) et du système (architecture électronique, mécatronique, modélisations multiphysiques).
Dans un contexte de croissance exponentielle de l'électronique et de raréfaction des ressources, la réutilisation de composants électroniques issus de systèmes en fin de vie représente une voie prometteuse pour limiter l'impact environnemental et soutenir le développement d'une économie circulaire. L'objectif de ce projet est de développer une méthodologie de diagnostic avancé permettant d'évaluer l'état de santé de composants électroniques, notamment de puissance, afin de les réintégrer dans un cycle de seconde vie moins contraignant.
Le ou la post-doctorant(e) aura pour mission de développer une approche complète pour évaluer le potentiel de réutilisation de composants électroniques, en vue de les réintroduire dans des cycles de seconde vie. Cela comprendra :
- L’identification d’indicateurs de santé pertinents pour suivre l’évolution des performances de composants (ex. : MOSFET, IGBT, condensateurs, etc.) ;
- La mise en place de bancs de test et de capteurs adaptés à la mesure de paramètres électriques, thermiques ou mécaniques, dans le but de détecter les signes de vieillissement ;
- L’analyse des modes de dégradation à travers des essais expérimentaux et des modèles de défaillance ;
- Le développement d’algorithmes de prédiction de la durée de vie résiduelle (Remaining Useful Life – RUL), adaptés à différents scénarios d’usage ;
- La contribution aux publications scientifiques, à la valorisation des résultats, et à la collaboration avec les partenaires du projet.
Analyse des Effluents Gazeux pour des Procédés de Gravure Plasma plus Éco-Responsables
Les gaz fluorés traditionnellement employés, comme le CF4 et le C4F8, ont des potentiels de réchauffement (GWP) extrêmement élevés et une longue durée de vie atmosphérique, participant au changement climatique. L’utilisation de gaz alternatifs à faible GWP, combinée à des systèmes d’abattements des effluents en sortie de réacteur, devrait permettre de concilier performances des procédés de gravure plasma et responsabilité écologique. Dans ce contexte, vous aurez en charge d’analyser et de caractériser par spectrométrie de masse les gaz présents dans un plasma de gravure industriel, et de les comparer à ceux présents à la sortie des pompes du réacteur et du système d’abattement. Les principaux objectifs sont de déterminer le taux de destruction des gaz fluorocarbonés à fort GWP utilisés dans les procédés de gravure au niveau du plasma et des systèmes de pompage et d’abattement ains que de proposer des solutions alternatives et innovantes pour minimiser le rejet des effluents gazeux à fort GWP.
Développement d'une architecture d'instrumentation innovante utilisant un réseau de capteurs magnéto-résistifs pour créer un système de tomographie rapide pour les piles à combustible
Développement d'une architecture d'instrumentation innovante utilisant un réseau de capteurs magnéto résistifs pour créer un système de tomographie rapide pour les piles à combustible.
L'objectif est de développer un démonstrateur TRL 4 en laboratoire pour prouver le concept sur une pile à combustible à basse température. Cela inclura quatre cartes de mesure avec plusieurs dizaines de capteurs magnétiques synchronisés pour des acquisitions simultanées. Les résultats expérimentaux et une description du système d'instrumentation seront publiés. Les données historiques seront utilisées pour valider les algorithmes de résolution de densité de courant et comparer leurs performances à celles des solutions basées sur des réseaux de neurones informés par la physique. Les résultats estimés de densité de courant seront utilisés pour une publication supplémentaire.
Le système d'instrumentation sera intégré dans un banc d'essai du CEA dédié au contrôle optimal, à l'observation des transitoires, à la détection de défauts et à l'exploration des phénomènes de propagation de défauts. Cette approche offrira une observation dynamique et non invasive de la distribution du courant dans la pile à combustible, améliorant ainsi la compréhension de son fonctionnement et facilitant l'optimisation de ses performances et de sa durée de vie.
Module PV réparable intégrant un élément de délamination par ultrason
Les panneaux photovoltaïques (PV) ont une durée de vie limitée en raison de la dégradation de leur performance, de défauts opérationnels ou de facteurs économiques. D’ici dix ans, des millions de tonnes de panneaux PV deviendront des déchets, posant des défis environnementaux et sociétaux significatifs. L'Union Européenne a reconnu ce problème par la directive WEEE pour la gestion des déchets électriques et électroniques.
Les modules PV sont des assemblages complexes contenant des matériaux critiques tel que l'argent et des polluants persistants comme les polymères fluorés. De plus, le verre et le silicium mis en œuvre présentent une empreinte carbone élevée, rendant le réemploi essentiel pour atténuer l'impact environnemental. Diverses techniques de démantèlement sont explorées pour extraire les métaux, les polymères et le verre. Les objectifs concernent la sélectivité et le rendement des procédés, la pureté des matériaux obtenus. Pour renforcer la durabilité du photovoltaïque, la gestion des modules dans une vision d'économie circulaire est essentielle.
Le CEA/LITEN mène des recherches sur les méthodes de délamination pour améliorer la qualité des matériaux recyclés. Dans ce postdoctorat, nous explorerons la capacité des ultrasons pour le démantèlement ou la réparation des modules PV. Le développement d'un modèle numérique pour comprendre les phénomènes de vibration dans les panneaux PV permettra la conception d'un outil pour un couplage efficace. En plus de la modélisation et de la mise en place de l'outil, nous explorerons de nouvelles architectures de modules PV en intégrant des couches composites sensibles aux ultrasons. L'évaluation de divers phénomènes induits tels que la transmission optique et le comportement thermomécanique fera partie de l'étude. Ce projet tirera parti d'un environnement scientifique de haut niveau, avec une expertise en modélisation numérique thermomécanique, en conception de modules PV et en fabrication de prototypes.
Étude de la formulation Vitesse-Vorticité-Pression pour discrétiser les équations de Navier-Stokes.
Les équations de Navier-Stokes incompressibles sont parmi les modèles les plus
utilisés pour décrire les écoulements d’un fluide newtonien (c’est-à-dire un fluide dont la viscosité est indépendante des forces extérieures appliquée au fluide). Ces équations modélisent le champ de vitesse et le champ de pression du fluide. La première des deux équations n’est autre que la loi de Newton, tandis que la seconde découle de la conservation de la masse dans le cas d’un fluide incompressible (la divergence de la vitesse est nulle). L’approximation numérique de ces équations est un véritable défi en raison de leur caractère tridimensionnel et instationnaire, de la contrainte de divergence nulle et enfin de la non-linéarité du terme de convection. Il existe différentes méthodes de discrétisation, mais pour la plupart de ces méthodes, l’équation de conservation de la masse n’est pas satisfaite exactement. Une alternative consiste alors à introduire comme inconnue supplémentaire la vorticité du fluide, égale au rotationel de la vitesse. On réécrit alors les équations de Navier-Stokes avec trois équations. Le post-doc consiste à étudier d'un point de vue théorique et numérique cette formulation et de proposer un algorithme de résolution efficace, dans le code TrioCFD.
TRAITEMENT D’EFFLUENTS ORGANIQUES RADIOACTIFS
Le projet ECCLOR (Projet labellisé ’Investissement d’Avenir’) vise à trouver un exutoire aux effluents organiques radioactifs actuellement sans filière. L’une des stratégies étudiées consiste à rendre les effluents compatibles avec les exutoires existants grâce à une décontamination préalable par percolation au travers d’une colonne d’adsorbant. Il est donc nécessaire de synthétiser des matériaux extractants sélectifs de radioéléments cibles qui puissent être utilisés en colonne.
Des études sont actuellement menées au CEA pour améliorer le traitement des effluents aqueux radioactifs en développant des procédés capables d’atteindre « le rejet zéro » tout en produisant un minimum de déchets. L’enjeu du projet ECCLOR est de transposer ces travaux à des solvants organiques contaminés présentant des compositions radiologiques et des propriétés rhéologiques variées.
Un premier contrat post-doctoral a été dédié au développement de matériaux dédiés à cette application. Ainsi, de nombreux supports inorganiques (silices, géopolymères, alumines…) ont été envisagés pour décontaminer ces effluents organiques. Les performances des différents matériaux développés au cours de travaux précédents sont optimisables en termes de capacité en actinides et sélectivité vis-à-vis des ions compétiteurs. En particulier, l’étude des performances des matériaux existants doit être se poursuivie sur des LORs simulés plus complexes, avec les adaptations de méthode analytique nécessaires.
Ce projet de recherche s'adresse à un post-doctorant souhaitant développer ses compétences en chimie analytique, compréhension de mécanismes d’extraction et ouvrir de nouvelles perspectives pour la gestion de déchets radioactifs. Il sera mené dans le cadre d’une collaboration entre deux laboratoires du CEA Marcoule : le Laboratoire de Formulation et de Caractérisation des Matériaux minéraux et le Laboratoire des Procédés Supercritiques et de Décontamination.