Conception et réalisation du contrôle magnétique de matrices de 1 000 qubits

L’ordinateur quantique est aujourd’hui un axe fort de recherche au CEA-LETI et dans de nombreux instituts et entreprises à travers le monde. En particulier, des champs magnétiques hautes fréquences localisés permettent de contrôler l’état de spin des qubits. Le passage à grande échelle (plus de 1 000 qubits) de cette technique de manipulation représente un véritable challenge technologique.
L’analyse bibliographique et les études déjà réalisées permettront de faire ressortir les avantages et les inconvénients des différentes techniques de contrôle. En collaboration avec les équipes d’intégration technologique, de simulation et de conception, de nouveaux développements technologiques et différents designs pourront être proposés pour mettre à profit les procédés disponibles (assemblages 3D, matériaux supraconducteurs…) et aboutir à la réalisation d’une preuve de concept pour le contrôle de qubits.

Décodeur neuronal auto-adaptatif pour une interface cerveau-moelle épinière clinique

Le CEA/LETI/CLINATEC lance un appel à candidatures pour un poste postdoctoral pour travailler sur le projet HORIZON-EIC. L'objectif du projet est d'explorer de nouvelles solutions de réhabilitation et de suppléance fonctionnelle pour les personnes en situation de handicap moteurs graves en utilisant une interface cerveau-machine (ICM) auto-adaptative. Les neuroprothèses enregistrent et décodent le signal neuronal cérébral pour activer des effecteurs (exosquelette, stimulateur de moelle épinière implantable, etc.) directement sans passage de commande de contrôle physiologique interrompu par une lésion de la moelle épinière. Un ensemble d'algorithmes pour décoder l'activité neuronale enregistrée au niveau du cortex cérébral (Electrocorticogram) a été développé à CLINATEC et testé dans le cadre de 2 protocoles de recherche clinique chez des tétraplégiques à Grenoble et chez des paraplégiques à Lausanne. Le postdoctorant contribuera aux prochaines avancées scientifiques ambitieuses répondant aux besoins médicaux des patients. L'amélioration cruciale de la convivialité peut être obtenue en atténuant le besoin d'un recalibrage constant du décodeur ICM en introduisant un cadre auto-adaptatif pour l’apprentissage du décodeur de manière incrémentale pendant l'utilisation des neuroprothèses autonome. L'ICM auto-adaptative (A-ICM) ajoute une boucle supplémentaire évaluant le niveau de cohérence entre les mouvements prévus de l'utilisateur et les actions effectuées à partir des données neuronales. Cette boucle peut fournir l’information sur les tâches ICM (labels) aux données enregistrées lors de l'utilisation autonome de la neuroprothèse. Les données labélisées peuvent être utilisées ensuite pour la mise à jour du décodeur en temps réel. Le décodeur neuronal innovant sera exploré et testé hors ligne et en temps réel dans le cadre d'essais cliniques en cours.

développement d'un jumeau numérique de procédés complexes

L’émergence actuelle des nouvelles technologies du numérique fait entrevoir de nouvelles perspectives à l’industrie. L'application de ces technologies à l’exploitation des procédés de vitrification pourrait permettre d’améliorer la connaissance des procédés, optimiser leurs exploitations, de former les opérateurs, d'aider à la maintenance prédictive et d'assister à la conduite du procédé.
L'objectif du projet SOSIE est de faire une première preuve de concept de mise en œuvre de technologies numériques dans le domaine des procédés de vitrification, en intégrant réalité virtuelle, réalité augmentée, IoT (Internet des Objets) et Intelligence Artificielle.
Ce projet, mené en collaboration, entre le CEA et la PME GAMBI-M, est un projet région type READYNOV. GAMBI-M est une entreprise spécialisée dans la reconstruction d’environnements complexes et en ingénierie numérique. Le travail sera réalisé en collaboration étroite avec les équipes du CEA qui développent les procédés de vitrification des déchets nucléaires.
Le projet consiste à développer un jumeau numérique de 2 procédés de vitrification, l'un à froid, l'autre en haute activité. Il sera question de développer un jumeau numérique visuel, grâce auquel l’utilisateur pourra visiter les cellules et accéder en tout point en virtuel. A partir de ce modèle reconstruit, un jumeau « augmenté » sera développé et sera connecté à l’automate de supervision. Enfin, la dernière étape consistera à développer « le jumeau intelligent » en exploitant les bases de données existantes sur le fonctionnement du procédé. En entrainant des algorithmes d’IA sur ces données, un modèle prédictif de fonctionnement nominal sera généré.
Des publications sont attendues sur la mise en œuvre des outils de réalité virtuelle et réalité augmentée sur des opérations en chaines blindées, ainsi que sur le développement de méthodes d’apprentissage profond pour l’assistance à la conduite de procédés aussi complexes.

Système de charge solaire décentralisé pour la mobilité durable en Afrique rurale

Une nouvelle station de recharge solaire autonome (SASCS) sera déployée en Éthiopie. Étant donné que 45 % de la population de l'Afrique subsaharienne n'a pas d'accès direct aux réseaux électriques et que l'infrastructure nécessaire pour exploiter de manière fiable d'autres sources d'énergie est largement inexistante pour bon nombre de ces populations en Éthiopie, l'introduction de la SASCS dans certaines communautés rurales du pays est un effort nécessaire. Il pourrait revigorer le secteur agricole des communautés et soutenir ceux dont l'emploi est lié à l'agriculture. Un SASCS pourrait également servir à intégrer les énergies renouvelables dans le mix électrique existant du pays. Le CEA INES agira en tant que partenaire-conseil pour la conception et la mise en œuvre de la solution (les batteries de seconde vie, le solaire seront étudiés). En outre, en raison de l'expertise établie du CEA INES dans l'installation d'outils solaires au sein de diverses communautés, l'initiative fournira également un savoir-faire pour l'installation du SolChargE en Ethiopie et coopérera à l'organisation d'ateliers pour les étudiants et les techniciens employés par le projet.

Développement de substrats grande surface pour l’électronique de puissance

L’amélioration des performances des composants en électronique de puissance constitue un enjeu majeur pour la réduction de notre consommation d’énergie. Le diamant apparaît comme le candidat ultime pour l’électronique de puissance. Cependant les petites dimensions et le prix des substrats sont des freins à l’utilisation de ce matériau. L’objectif principal du travail est de dépasser ces deux difficultés en découpant les échantillons en couches minces par SmartCut™ et en réalisant un pavage de ces couches minces pour obtenir des substrats compatibles avec la microélectronique.
Pour cela, différentes expériences seront réalisées en salle blanche. Dans un premier temps, il faudra fiabiliser le procédé SmartCut™. Des caractérisations du type microscopie optique, AFM, MEB, Raman, XPS, électriques… seront réalisées afin de mieux comprendre les mécanismes qui entrent en jeu dans ce procédé.
Le candidat pourra être amené à travailler sur les autres matériaux grand gap étudiés au laboratoire comme le GaN et le SiC ce qui lui permettra d’avoir une vision élargie sur les substrats pour l’électronique de puissance.

Accélération par GPU d'un code de dynamique des gaz préexistant.

Le code Triclade, développé au CEA-DAM, est un code DNS tridimensionnel écrit en C++ MPI résolvant les équations de Navier-Stockes compressibles pour un mélange binaire de gaz parfaits sur des maillages cartésiens. Il est utilisé, en particulier, pour simuler le mélange turbulent se produisant aux interfaces entre fluides sous l'effet d'instabilités hydrodynamiques.

Le(a) candidat(e) aura pour tâche l'amélioration des performances de l'application en mettant en place un nouveau degré de parallélisme basé sur une programmation sur carte graphique (GPU). Le code ainsi produit devra réduire au mieux la divergence entre les approches CPU et GPU, en permettant notamment d'unifier les appels aux fonctions calculatoires de manière à masquer l'utilisation explicite des accélérateurs. Pour ce faire, il (elle) pourra se baser sur une API existante (telle que Kokkos), ou, suivant les besoins, des directives de précompilations (telles que OpenMP). Le(a) candidat(e) sera amené(e) à collaborer fortement avec plusieurs autres équipes travaillant autour de l'accélération GPU.
Une bonne connaissance de la programmation C/C++, des systèmes distribués (calculateurs) ainsi que de la programmation sur carte graphique seront nécessaires à la concrétisation de ces objectifs. Des connaissances en mécanique des fluides seraient appréciées.

Poste doc en ingénierie de l'oesophage par impression 3D

Conception de Matrice 2D pour Calcul Quantique sur Silicium avec Validation par Simulation

L'objectif est de concevoir une structure matricées 2D pour le calcul quantique sur silicium afin d'envisager des structures de plusieurs centaines de Qubits physique.

En particulier le sujet sera focalisé sur :
- La fonctionnalité de la structure (interaction coulombienne, RF et quantique)
- Les contraintes de fabrication (simulation et contrainte de procédé réaliste)
- La variabilité des composants (Prise en compte de paramètre de variabilité et défectivité réaliste)
- Les contraintes induites sur les algorithmes (code de correction d'erreur)
- Scalabilité de la structure vers des milliers de Qubit physiques

Le candidat travaillera au sein d'un projet de plus de cinquante personnes avec des expertises couvrant la conception, la fabrication, la caractérisation et la modélisation des qubits de spin ainsi que des disciplines connexes (cryoélectronique, algorithmes quantiques, correction d'erreurs quantiques, …)

Modélisation CFD des mouvements de gaz en cavités salines

Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.

Etude théorique et expérimentale de la propagation de la lumière polarisée dans une structure OLED

En collaboration avec des chimistes du CEA Saclay et de l’université de Rennes, Le laboratoire LCEM du Leti s’intéresse à des nouvelles molécules chirales pour des sources OLED (Organic Light Emitting Device) capables d’émettre de la lumière circulairement polarisée (CP). L’intérêt de ces sources CPOLED est multiple et englobe aussi bien les micro-écrans que les applications pour la santé. Alors que l’état de l’art est assez fourni sur la partie chimique, peu d’études se sont penchées sur la génération et le transport de lumière dans les composants CPOLEDs. De la même manière, les conditions de mesure de la polarité de la lumière émise sont peu détaillées dans la littérature existante.
Au laboratoire LCEM où ces molécules chirales sont intégrées dans des dispositifs CPOLED, l’objectif est de concevoir des architectures OLEDs à même de mieux préserver la polarisation de la lumière. Pour cela, il est indispensable de comprendre la propagation de la lumière dans les empilements OLED d’un point de vue théorique et expérimental. Ce travail s’inscrit dans une collaboration plus large mise en place dans le projet ANR « i-chiralight » .
Nous proposons dans ce cadre une étude qui se déroulera en deux phases.
- Etude de matériaux émetteurs simples : Les matériaux à étudier seront des couches minces déposées sous vide en utilisant les moyens d’évaporation de couches minces disponibles au laboratoire. Les matériaux organiques utilisés seront fournis par nos partenaires chimistes de Saclay ou de Rennes. Des caractérisations optiques de type ellipsométrie, photoluminescence, … seront réalisés afin d’évaluer la performance des molécules en terme de rendement d’émission mais également en terme de pouvoir rotationnel de la lumière. Pour ce dernier point, un modèle permettant de calculer tous les termes des matrices de Müller est en cours de développement et la validation de celui-ci sera un travail à effectuer par le post-doctorant.
- Etude de composants OLED complets : Dans

Top