Apprentissage de règles causales

Dans le cadre d’un projet qui concerne la création de matériaux innovants, nous souhaitons renforcer notre plateforme dans sa capacité à apprendre à partir de peu de données expérimentales.
En particulier, nous souhaitons travailler dans un premier temps sur l’extraction de liens causaux entre les paramètres de fabrication et la propriété. L’extraction de causalité est un sujet de très grande importance en IA aujourd’hui et nous souhaitons adapter les approches existantes aux données expérimentales et leurs particularités afin de sélectionner les variables d’intérêt. Dans un second temps, nous nous intéresserons à partir de ces liens causaux, à leur caractérisation (inférence causale) par une approche à base de règles floues, c’est-à-dire que nous créerons des règles floues adapter à leur représentation.

IA générative pour l'ingénierie dirigiée par les modéles

L'IA générative et les grands modèles de langage (LLM), tels que Copilot et ChatGPT, peuvent compléter le code à partir de fragments initiaux écrits par un développeur. Ils sont intégrés dans des environnements de développement de logiciels tels que VS code. De nombreux articles analysent les avantages et les limites de ces approches pour la génération de code. Malgré quelques lacunes, le code produit est souvent correct et les résultats s'améliorent.

Cependant, une quantité étonnamment faible de travaux a été réalisée dans le contexte de la modélisation des logiciels. L'article de Cámara et al. conclut que si les performances des LLM actuels pour la modélisation de logiciels sont encore limitées (contrairement à la génération de code), il est nécessaire (contrairement à la génération de code) d'adapter nos pratiques d'ingénierie basées sur les modèles à ces nouveaux assistants et de les intégrer dans les méthodes et outils MBSE.

L'objectif de ce post-doc est d'explorer l'IA générative dans le contexte de la modélisation des systèmes et des outils associés. Par exemple, l'assistance de l'IA peut soutenir l'achèvement, la refactorisation et l'analyse (par exemple les modèles de conception identifiés ou les anti-modèles) au niveau du modèle. Les propositions sont discutées au sein de l'équipe et, dans un deuxième temps, le mécanisme est prototypé et évalué dans le contexte du modeleur UML open-source Papyrus.

Développement d'approches pour l'intelligence artificielle à base de bruit

Les approches actuelles de l'IA sont largement basées sur la multiplication matricielle. Dans le de ce projet postdoccadre toral, nous aimerions poser la question suivante : quelle est la prochaine étape ? Plus précisément, nous aimerions étudier si le bruit (stochastique) pourrait être la primitive computationnelle sur laquelle la nouvelle génération d'IA est construite. Nous répondrons à cette question en deux étapes. Tout d'abord, nous explorerons les théories concernant le rôle computationnel du bruit microscopique et au niveau du système dans les neurosciences, ainsi que la façon dont le bruit est de plus en plus exploité dans l'intelligence artificielle. Nous visons à établir des liens concrets entre ces deux domaines et, en particulier, nous explorerons la relation entre le bruit et la quantification de l'incertitude.
Sur cette base, le chercheur postdoctorant développera ensuite de nouveaux modèles qui exploitent le bruit pour effectuer des tâches cognitives, dont l'incertitude est une composante intrinsèque. Cela ne servira pas seulement comme une approche d'IA, mais aussi comme un outil informatique pour étudier la cognition chez les humains et aussi comme un modèle pour des zones spécifiques du cerveau connues pour participer à divers aspects de la cognition, de la perception à l’apprentissage, la prise de décision et la quantification de l'incertitude.
Les perspectives du projet postdoctoral devraient informer sur la manière dont l'imagerie IRMf et les enregistrements électrophysiologies invasifs et non invasifs peuvent être utilisés pour tester les théories de ce modèle. En outre, le candidat devra interagir avec d'autres activités du CEA liées au développement d'accélérateurs d'IA analogiques basés sur le bruit.

Stratégie de co-conception pour l'exploitation de la sparsité spatio-temporelle dans les modèles de réseaux de neurones à l'apprentissage/inférence

L'objectif du projet est d'identifier, d'analyser et d'évaluer les mécanismes de modulation de la sparsité spatio-temporel des fonctions d'activation afin de minimiser la charge de calcul du modèle NN de transformateur (apprentissage/inférence). Une approche combinée avec la quantification extrême sera également envisagée.
L'objectif est d'affiner conjointement une stratégie innovante pour évaluer les impacts et les gains potentiels de ces mécanismes sur l'exécution du modèle sous contraintes matérielles. En particulier, cette co-conception devrait également permettre de qualifier et d'exploiter une boucle de rétroaction bidirectionnelle entre un réseau neuronal ciblé et une instanciation matérielle afin d'obtenir le meilleur compromis (compacité/latence).

Hybridation de LLMs pour l’ingénierie des exigences

Le développement de systèmes physique ou numériques est un processus complexe mêlant des défis techniques et humains. La première étape consiste à donner corps aux idées en rédigeant des spécifications ou un cahier des charges du système en devenir. Généralement écrits en langage naturel par des analystes fonctionnels (business analysts), ces documents sont des pièces maîtresses qui lient toutes les parties prenantes pendant toute la durée du projet et facilite le partage et la compréhension de ce qu’il faut faire. L’ingénierie des exigences propose diverses techniques (revues, modélisation, formalisation, etc.) pour réguler ce processus et améliorer la qualité (cohérence, complétude, etc.) des exigences produites, dans le but de détecter et corriger les défauts avant même l’implémentation du système.
Dans le domaine de l’ingénierie des exigences, l’arrivée récente des réseaux de neurones à très grands modèles (LLM) a la capacité de « changer la donne » [4]. Nous proposons de soutenir le travail de l’analyste fonctionnel avec un outil qui facilite et fiabilise la rédaction du référentiel d'exigences. L’outil exploitera un agent conversationnel de type transformeur/LLM (tels que ChatGPT ou Lama) combiné à des méthodes rigoureuses d'analyse et de conseil. Il proposera des options de réécriture des exigences dans un format compatible avec les normes INCOSE ou EARS, analysera les résultats produits par le LLM, et fournira un audit de qualité des exigences.

POST-DOC/CDD Reconstruction tomographique en rayons X basée sur des méthodes Deep-Learning

Le CEA-LIST développe la plateforme logicielle CIVA, référence de la simulation des procédés de contrôle non destructif. Elle propose notamment des outils pour l’inspection radiographique X et tomographique qui permettent, pour un contrôle donné, de simuler l’ensemble des radiographies en prenant en compte divers phénomènes physiques associés, ainsi que la reconstruction tomographique correspondante. Le CEA-LIST comporte par ailleurs une plateforme expérimentale pour l’inspection robotisée par tomographie à rayons X.
Le travail proposé s’intègre dans la contribution du laboratoire à une ANR bilatérale franco-allemande impliquant des partenaires académiques et industriels et portant sur l’inspection d’objets de grandes dimensions permise par la plateforme robotisée. Afin de pouvoir mener à bien la reconstruction 3D de l'objet, un nombre suffisant de radiographies doit être réalisé. Dans bien des situations, certains angles de vues ne peuvent pas être acquis en raison des dimensions de l'objet et/ou des limitations de mouvement des robots utilisés, entraînant une perte de qualité de la reconstruction 3D.
Les contributions attendues portent sur l’utilisation de méthodes de Deep-Learning, pour compléter les projections manquantes d’une part, et réduire les artéfacts de reconstruction d’autre part. Ce travail inclut des étapes basées sur CIVA que sont la constitution d’une base de données simulées et l’évaluation par mesure POD (Probability Of Detection).
Le(la) candidat(e) aura accès aux facilités du centre de recherche de Paris Saclay et sera amené(e) à valoriser ses résultats sous la forme de communications scientifiques (conférences internationales, publications).
Profil du candidat :
Docteur en traitement de données ou intelligence artificielle.
Anglais niveau courant (présentation orale, rédaction de publications scientifiques).
Une connaissance préalable de la physique des rayons X et des méthodes de reconstruction tomographique serait appréciée.

Développement d'Algorithmes pour la Détection et la Quantification de Biomarqueurs à partir de Voltammogrammes

L'objectif du post-doctorat est de développer une solution algorithmique et logicielle performante permettant la détection et la quantification des biomarqueurs d'intérêt à partir de voltammogrammes. Ces voltammogrammes sont des signaux unidimensionnels issus de capteurs électrochimiques innovants. L'étude sera réalisée en étroite collaboration avec un autre laboratoire du CEA-LIST, le LIST/DIN/SIMRI/LCIM, qui proposera des capteurs électrochimiques dédiés et novateurs, ainsi qu'avec la start-up USENSE, qui développe un dispositif médical permettant la mesure de plusieurs biomarqueurs dans l'urine.

Reconstruction tomographique par rayons X basée sur des méthodes analytiques et Deep-Learning

Le CEA-LIST développe la plateforme logicielle CIVA, référence de la simulation des procédés de contrôle non destructif. Elle propose notamment des outils pour l’inspection radiographique X et tomographique qui permettent, pour un contrôle tomographique donné, de simuler l’ensemble des projections radiographiques (ou sinogramme) en prenant en compte divers phénomènes physiques associés, ainsi que la reconstruction tomographique correspondante.
Le travail proposé s’intègre dans la contribution du laboratoire à un projet européen qui porte sur l’inspection tomographique de containers de transport de marchandise avec des systèmes d’inspection utilisant des sources de haute énergie. Les contraintes spatiales de l’étape d’acquisition des projections (les camions transportant les containers passent dans un portique d’inspection) impliquent une adaptation de la géométrie du système source/détecteur et par conséquent de l’algorithme de reconstruction correspondant. De plus, le système ne peut générer qu’un nombre de projections réduit, ce qui rend le problème mal posé dans le contexte de l’inversion.
Les contributions attendues portent sur deux aspects distincts de la méthodologie de reconstruction à partir des données acquises. D’une part, il s’agit d’adapter les méthodes de reconstruction analytiques à la géométrie d’acquisition spécifique de ce projet, et d’autre part de travailler sur des méthodes permettant de pallier le manque d’information lié au nombre limité de projections radiographiques. Dans cet objectif, des méthodes d’apprentissage supervisé, plus spécifiquement par Deep-Learning, seront utilisées à la fois pour compléter le sinogramme, et pour réduire les artéfacts de reconstruction causées par le faible nombre de projections disponible. Une contrainte d’adéquation aux données et au système d’acquisition sera également introduite afin de générer des projections physiquement cohérentes.

Conception d’alliages à Haute entropie (thermodynamique prédictive, Machine learning) et fabrication rapide par frittage SPS

Le travail proposé vise à utiliser des méthodes de fouille de données (réseaux de neurones artificiels, Random Forest, processus Gaussiens) combinée avec la thermodynamique prédictive (méthode CALPHAD) pour découvrir de nouveaux alliages HEA dans le domaine à 6 éléments Fe-Al-Ni-Co-Mo-Cr. Des méthodes expérimentales de densification rapide (frittage assisté par courants électromagnétiques pulsés (SPS pour Spark Plasma Sintering)) et de dispense automatisée de poudre seront utilisées pour la fabrication rapide des compositions identifiées. Des méthodes de caractérisation semi-automatisées permettront d’alimenter des bases de données avec des mesures rapides de propriétés physiques (densité, taille de grains, dureté). La prédiction de propriétés d’usage pour deux cas d’application (corrosion par des sels fondus et propriétés mécaniques pour application structurale) sera réalisée et les alliages correspondant élaborés pour validation expérimentale.

Développement d'algorithmes d'intelligence artificielle pour la localisation bande étroite

Les signaux bande étroite sont largement utilisés dans le contexte des réseaux de télécommunication faible consommation, qui sont l’un des composants clé de l’internet des objets (IoT). Cependant, ces signaux ne disposant que d’une bande de fréquence limitée, ils sont peu adaptés à de la localisation de précision, en particulier dans des environnements complexes tels que centre-ville ou des canyons urbains qui perturbent fortement le trajet de l’onde. Une approche permettant de surmonter ces difficultés consiste à s’appuyer sur un modèle 3D de la ville et de ses bâtiments afin d’améliorer la modélisation de la propagation cependant les algorithmes classiques (lancés de rayons par ex.) ont montré leurs limites pour répondre à un problème aussi complexe. Afin de dépasser les limitations actuelles, le laboratoire LCOI souhaite explorer les approches à base d’intelligence artificielle (IA) qui semblent très pertinentes pour ce type de problèmes. Le laboratoire LCOI a déployé un réseau bande étroite dans la ville de Grenoble et démarré une large collecte de mesure afin de supporter ces études.
En s’appuyant sur l’analyse de la littérature existante ainsi que sur les connaissances acquises au sein du laboratoire, le candidat devra
- Superviser et contribuer à la campagne de mesures
- Exploiter les données collectées afin de mieux comprendre les caractéristiques de propagation des signaux bande étroite dans différents environnements
- Développer une chaine de simulation de la propagation des signaux
- Affiner les calculs de borne de performance d’une localisation bande étroite
- Développer des algorithmes de localisation utilisant l’intelligence artificielle ainsi que la topologie 3D, et les comparer à ceux de l’état de l’art
- Contribuer des projets au travers de son travail de recherche
- Publier son travail dans des conférences et des journaux de qualité

Top