Développement d’une sonde de caractérisation matériaux à jet électromagnétique
Le sujet se situe dans le cadre de contrôle non destructif des propriétés électromagnétiques de matériaux.
On souhaite faire évoluer un dispositif expérimental existant dont le principe repose sur l’utilisation d’une sonde radiofréquence qui permet d’extraire du coefficient de réflexion mesuré la perméabilité magnétique du matériau recouvrant un objet. La résolution du problème direct à partir de simulations numériques permet d'établir des abaques qui sont exploitées pour résoudre le problème inverse. La sensibilité aux propriétés du matériau, la résolution spatiale et les incertitudes de mesures du dispositif actuel sont limitées par l’antenne. De récentes études ont démontré l’intérêt de l’utilisation d’une sonde à base de jet électromagnétique pour la caractérisation avec une résolution sub-longueur d’onde. Sur la base de ces travaux, l'objectif est de concevoir et réaliser une nouvelle sonde, répondant aux contraintes de performances recherchées. Le/la candidate sera chargé/e des travaux de conception et de simulation puis du suivi de la réalisation des prototypes. Il/elle sera également en charge des campagnes d’essai de ces prototypes sur des objets de référence pour démontrer l’apport par rapport à la solution actuelle. La nouvelle sonde sera ensuite à intégrer dans le moyen et le processus de mesure actuel.
Le déroulement du post-doctorat suivra trois principales étapes. La première consistera à étudier le principe d'antenne à jet électromagnétique et à proposer un concept de sonde adapté au moyen de mesure. Des logiciels de simulations commerciaux seront exploités pour la conception, puis des codes internes pour la validation du prototype retenu. Dans un deuxième temps, la fabrication du prototype sera à suivre puis des essais avec des échantillons de référence permettront de valider le concept. Enfin, l'intégration de la sonde sur le banc et dans la chaine de calcul et d'extraction sera à réaliser.
Etude de la diode et du tube anodique d’un injecteur à induction
La Direction des Applications Militaires du CEA utilise la radiographie éclair pour caractériser l’état de la matière soumise à des chocs forts ou à une densification importante sous l’effet d’explosifs. Dans de telles conditions extrêmes, le succès des expériences de radiographie éclair nécessite des sources de rayonnement X impulsionnelles de faibles dimensions spatiales (quelques mm), brèves (environ 60 ns), fortement pénétrantes (quelques MeV) et intenses (plusieurs rads). De telles sources sont produites à partir du rayonnement de freinage créé par une impulsion brève et intense d'électrons (plusieurs kA) de haute énergie dans un matériau cible. L’installation radiographique EPURE du CEA exploite deux Accélérateurs Linéaires à Induction (LIA) comme sources de radiographie éclair.
Correction numérique de l’état de santé d’un réseau électrique
Les défauts de câbles sont généralement détectés lorsque la communication est interrompue, ce qui entraîne des coûts et des temps de réparation non négligeables. De plus, l’intégrité des données devient un enjeu majeur en raison des menaces d’attaques et d’intrusions accrues sur les réseaux électriques, qui peuvent perturber la communication. Pouvoir distinguer une perturbation due à la dégradation de la couche physique d’un réseau électrique ou à une attaque en cours sur le réseau énergétique, permettra de guider la prise de décision concernant les opérations de correction, notamment la reconfiguration du réseau et la maintenance prédictive, afin de garantir la résilience du réseau. Le sujet propose d’étudier la relation entre les défauts naissants sur les câbles et leur impact sur l’intégrité des données dans le cadre d’une communication par lignes électriques ou PLC (Power Line Communication). Les travaux se baseront sur le déploiement d’une instrumentation utilisant la réflectométrie électrique, combinant des capteurs distribués et des algorithmes d’IA pour le diagnostic en ligne des défauts naissants sur les réseaux électriques. En présence de certains défauts, des méthodes avancées d’IA seront appliquées afin de corriger numériquement l’état de santé de la couche physique du réseau électrique et garantir ainsi sa fiabilité.
Modélisation des défauts sur les réseaux DC basse tension dans les bâtiments, vers des algorithmes de détection de défauts
Le développement de l'usage des énergies renouvelables et du stockage de l'énergie ainsi que les progrès faits par les composants d'électronique de puissance amènent progressivement à repenser les architectures des réseaux électriques de distribution basse tension dans les bâtiments. Ces évolutions permettront un développement des réseaux à courant continu ou mixtes alternatif-continu alimentés par des convertisseurs statiques. Sur ce type de réseau, les défauts deviennent plus difficiles à gérer du fait des sources de puissance utilisées. En effet, les signatures habituelles du court-circuit ou de la surcharge ne sont plus les mêmes et vont varier en fonction des convertisseurs utilisés et de l'architecture du réseau. Pour cela, il convient d'identifier, par la simulation, les topologies de protection les plus adaptées (par les régimes de neutre par exemple) et d'identifier les signatures types des défauts. In fine, ces signatures permettront de disposer de dispositifs de détection optimums.
Conception et réalisation du contrôle magnétique de matrices de 1 000 qubits
L’ordinateur quantique est aujourd’hui un axe fort de recherche au CEA-LETI et dans de nombreux instituts et entreprises à travers le monde. En particulier, des champs magnétiques hautes fréquences localisés permettent de contrôler l’état de spin des qubits. Le passage à grande échelle (plus de 1 000 qubits) de cette technique de manipulation représente un véritable challenge technologique.
L’analyse bibliographique et les études déjà réalisées permettront de faire ressortir les avantages et les inconvénients des différentes techniques de contrôle. En collaboration avec les équipes d’intégration technologique, de simulation et de conception, de nouveaux développements technologiques et différents designs pourront être proposés pour mettre à profit les procédés disponibles (assemblages 3D, matériaux supraconducteurs…) et aboutir à la réalisation d’une preuve de concept pour le contrôle de qubits.
Conception en vue de la fiabilité des composants microélectroniques numériques
Les mémoires non-volatiles de type flash sont un élément clé pour le développement des applications haute-température dans l’aérospatial, l’industrie automobile et l’industrie du forage. Malheureusement, le temps de rétention des mémoires flash est fortement dégradé par la haute-température et peut être considérablement diminué même à des températures plus modérées, particulièrement dans le cas où il faut stocker plusieurs bits par cellule. Cet effet peut être estompé à travers un rafraîchissement périodique des données. Le problème est que, en présence des variations de température dues à un changement des conditions environnementales et/ou de charge de travail, une fréquence de rafraîchissement fixe doit être adaptée au pire cas et risque d’entraîner des pertes en termes de performance et endurance.
Le premier objectif de ce projet est d’implémenter une méthode de rafraîchissement basée sur l’utilisation d’un compteur permettant de : (a) suivre l’évolution de l’impact de la température sur le temps de rétention des mémoires flash, (b) générer des alertes sur l’imminence d’une perte de données et (c) fournir des timestamps.
Le deuxième objectif du projet est de déterminer la loi qui gouverne l’évolution avec le temps des fautes de rétention dans une mémoire flash. Le but est l’implémentation d’une technique capable de déterminer le temps de rétention restant de chaque page mémoire en fonction de l’âge de rétention, i.e. le temps écoulé depuis le stockage des données, et le nombre des erreurs de rétention et non-rétention.
Le travail du post-doctorant inclura la publication des résultats scientifiques dans des conférences internationales et journaux de haut niveau.
Développement d’un système de récupération d’énergie mécanique de type machine tournante à base d’aimants permanents
Cette offre de post-doctorat s’inscrit dans la thématique de la récupération d’énergie pour l’alimentation de capteurs autonomes communicants. Le post-doctorant aura pour objectif de participer au développement de récupérateurs d’énergie électromagnétiques dont le fonctionnement peut s’apparenter à celui d’une machine tournante à aimants permanents. Le candidat aura une formation en électrotechnique, aura déjà conçu, modélisé et testé des machines tournantes; dans l’idéal des machines tournantes à aimants permanents.
Les missions du (de la) candidat(e) seront :
1) Imaginer des dispositifs de récupération d’énergie en appliquant les compétences développées en machines tournantes
2) Modéliser et optimiser ces dispositifs
3) Caractériser les dispositifs
4) Participer à l’industrialisation des prototypes réalisés
Gestion optimale d’un système énergétique tertiaire
Dans le cadre de la solution ciblant les sites tertiaires ou résidentiels qui consomment et produisent de l’énergie électrique, l’objectif est d’optimiser l’utilisation de leur énergie en fonction de critères économiques ou contraintes réseaux (adaptation de la demande) sans perturbation du confort des utilisateurs. L’objet de ce poste est de développer une solution de « gestion optimale de l’utilisation du solaire dans un bâtiment tertiaire intégrant des bornes de recharge VE et du stockage ». Selon trois objectifs : - Minimiser le cout de la consommation en fonction d’un tarif dynamique
- Maximiser l’utilisation de l’énergie solaire
- Minimiser la puissance appelée du réseau. Tout en prenant en compte le LCOS (Levelised Cost Of Storage) de la batterie. Le Post-Doc devra contribuer et participera à: - Spécification de cahier des charges d’un système tertiaire - Développement des algorithmes de gestion d’un système tertiaire - Déploiement et test de la solution proposée.
Contribution aux développements de dispositifs de mesure d’antennes miniatures
La généralisation des liens radiofréquences fonctionnant aux fréquences VUHF pour équiper un nombre croissant de dispositifs électroniques communicants contribue à intensifier les recherches sur la miniaturisation et l’intégration des antennes. En conséquence, des progrès significatifs sont régulièrement réalisés pour réduire les dimensions des antennes et il n’est plus rare de trouver des travaux décrivant des structures antennaires en 1/30 de la longueur d’onde. Une sensibilité accrue au contexte de fonctionnement est observable avec les antennes électriquement petites. Cette particularité se traduit notamment par des problèmes de mesure des propriétés électriques et de rayonnement qui sont susceptibles d’être altérées avec les techniques standards consistant à connecter un câble de mesure à l’antenne. Ce sujet cherche à développer des techniques de mesure d’antennes électriquement petites à l’aide de méthodes dites non-invasives, c’est-à-dire ne perturbant pas (ou peu) l’antenne sous test. Deux techniques seront investiguées en se basant sur les travaux déjà réalisés dans le laboratoire. La première technique repose sur la réflectométrie électromagnétique en champ lointain. La seconde technique repose sur l’utilisation d’un transducteur optique- radiofréquence au voisinage de l’antenne sous test pour notamment concevoir un réflectomètre RF miniature à conversion optique pour la mesure d’impédance d’antenne.
Conception de modules photoniques intégrés
La conception de modules de transmission optiques de nouvelles génération (en particulier modules transceivers optiques sur carte) met en jeu l’association de deux technologies de pointes développées au Leti : la photonique sur silicium et le packaging silicium 3D.
Afin de répondre aux objectifs de ces modules en terme de performance, coût et densité, il est nécessaire de réaliser un désign prenant en compte toutes les contraintes techniques: mécanique, optique, thermique mais surtout électronique/RF.
La mission proposée consiste à concevoir de tels modules en optimisant les interconnexions RF internes et externes du module, et la bonne mise en oeuvre des éléctroniques (ASICs) intégrés. La simulation de plusieurs architectures concurrentes (e.g. avec les logiciels HFSS et ADS) permettra d’orienter les choix techniques.
Enfin, il faudra également assurer leur mise en oeuvre dans un système et leur caractérisation en préparant les cartes et bancs de test associés.