Champ électrique en calculs ab initio, application aux RRAM

Depuis plusieurs années, le LETI/DCOS a engagé un effort de simulation ab initio des phénomènes microscopiques à l’origine du fonctionnement des RRAM à base d’oxydes (HfO2, Ta2O5, Al2O3). La prise en compte d’un champ électrique appliqué au système MIM (Metal-Isolant-Métal) est aujourd’hui possible grâce à deux approches par séparation d’orbitales [1] ou par calcul en fonction de Green hors équilibre [2]. Nous proposons un travail de développement et de prise en main de ces méthodes en combinant plusieurs approches de simulation. Le but est d’étudier les mécanismes de dégradation d’un oxyde en suivant le mouvement des atomes oxygènes couplé au champ électrique. Ces mécanismes sont encore largement méconnus et viendront supporter les efforts d’optimisation et de caractérisation des cellules mémoires RRAM actuellement fabriquées et étudiées au LETI. Les outils de simulations visés sont Siesta pour la partie DFT, et TB_Sim pour la partie transport.
[1] S. Kasamatsu et al., « First principle calculation of charged capacitors under open-circuit using the orbital separation approach, PRB 92, 115124 (2015)
[2] M. Brandbyge et al., « Density functional method for nonequilibrium electron transport », PRB 65, 165401 (2002)

Etude des phénomènes physiques entrant en jeu dans le vieillissement des nanofils de silicium utilisées comme jauges de détection piézorésistives pour la réalisation de capteurs MEMS inertiels.

C’est grâce aux récents développements de la microélectronique que des nouvelles générations de capteurs alliant hautes performances, taille réduite et faible coût ont pu voir le jour. Dans ce contexte, le CEA-LETI a proposé un nouveau concept novateur appelé M&NEMS pour la réalisation de capteurs inertiels de type accéléromètres, magnétomètres et gyromètres. Le concept M&Nems combine les technologies MEMS et NEMS de manière à profiter de la grande force d’inertie générée par une masse MEMS et de la forte sensibilité de détection de jauges NEMS piézorésistives. Des démonstrateurs ont d’ores et déjà été réalisés et ont permis de démontrer l’intérêt du concept M&Nems, l’un des principaux challenges qui reste à relever concerne la fiabilité des capteurs reposant sur ce concept et en particulier des nano jauges piézorésistives. Le travail de recherche sera donc essentiellement focalisé sur l’étude des modes de défaillances de ces nano jauges piézorésistives avec identification des phénomènes physiques et mise en place de modèles de défaillance. Pour ce faire, un premier travail préliminaire pourra être axé sur la physique du composant avec une étude de la conduction électrique dans les nano jauges : piézorésistivité, piégeage de charges et relaxation, effet de champ… L’étude pourra se poursuivre ensuite par l’étude des modes de défaillances des nano jauges proprement dites, il s’agira concrètement d’être en mesure de comprendre et modéliser la physique de vieillissement de ces nano jauges. Pour ce faire, il sera possible de s’appuyer sur les connaissances acquises sur la physique de conduction des nano jauges mais aussi de jouer sur les paramètres physiques des nano jauges. Au final, les modèles de vieillissement mis en place devront permettre de proposer et valider des choix technologiques de manière à garantir la durée de vie des nano jauges en fonction des conditions d’utilisation des capteurs.

Etude du refroidissement d’un système électronique compact

Les technologies 3D, qui consistent à empiler en verticale un ou plusieurs composants électroniques, constituent un axe de recherche mondial, tant au niveau architecturale qu’au niveau fabrication. La région grenobloise est au cœur de ces avancées technologiques grâce à des démonstrations de 1ere mondiale qui positionnent le Cea-Léti parmi les leaders dans ces technologies avancées.
L’un des points critiques de ces technologies innovantes est de contrôler la gestion de la thermique dans de tels composants 3D quelle que soit l’application finale visée. Les solutions classiques d’aujourd’hui comme l’ajout d’un ventilateur ne peuvent s’adapter à toutes les contraintes, et peuvent s’avérer d’une efficacité limitée. Les solutions technologiques intégrées sont donc aujourd’hui incontournables et sont envisagées à deux niveaux différents du composant; soit la thermique est gérée directement dans les puces en silicium qui constituent l’empilement en 3D, soit au niveau du packaging du composant ainsi échafaudé. Il peut aussi être envisagé de coupler les deux solutions.
L’objectif de cette étude constitue en 1er lieu à réaliser un état de l’art complet des technologies existantes en vue de les évaluer pour les composants développés au Leti. Cette évaluation reposera sur des simulations thermiques adaptées aux composants et une analyse critique complète basée sur les critères faisabilité technologique, efficacité attendue, consommation éventuelle, et coût aboutira à choisir la solution la plus pertinente.
La seconde partie du travail sera ainsi consacrée à la mise en œuvre de cette solution. En s’appuyant sur des experts de la technologie silicium et du packaging, le candidat aura pour mission de contribuer à la conception du composant (dimensionnement et réalisation) et à sa caractérisation.
Ce poste s’adresse à un chercheur ayant de solides connaissances dans les domaines de la thermique et des composants microélectroniques.

Double report de films minces piézoélectrique pour l’élaboration de dispositifs RF innovants

Ces travaux visent à étudier et développer un nouveau concept de multireport de films minces piézoélectrique pour des applications RF. Le candidat sera en charge du développement de l’ensemble de la filière de réalisation de ces structures multicouche et des composants RF 3D. Pour cela, il devra maitriser les mécanismes physiques intervenant dans la technologie de transfert de film et concevoir l’architecture complète notamment via la simulation des propriétés RF des filtres attendues. Une fois la structure définie et les principes fondamentaux maîtrisés, le candidat devra alors identifier les développements nécessaires en relation avec les experts technologique du Léti, assurer leur mise en place sur la plateforme technologique de réalisation et prendre en charge la réalisation des étapes les plus critiques.
Le développement de cette filière de réalisation devra ainsi permettre la génération de substrats possédant une qualité et des propriétés compatibles avec le cahier des charges des composants. La fonctionnalité des substrats devra alors être démontrée via la réalisation de composants RF pertinents afin de démontrer l’apport de cette nouvelle solution technologique au niveau des applications visées.
Le candidat devra faire preuve d’autonomie, d’initiative et de rigueur scientifique afin de s’approprier l’ensemble de la technologie de réalisation.

Développement d’un packaging hermétique couche mince pour des composants Switches MEMS RF

Le Leti a mis au point ces dernières années une technologie de commutateurs MEMS RF qui est à l’état de l’art de par ses performances RF et qui possède une maturité technologique industrielle. Pour finaliser ce composant et assurer un niveau de fiabilité sur le long terme requis pour des applications spatiales, le Leti développe actuellement un procédé innovant de packaging couche mince hermétique.
Le candidat s’intègrera dans l’équipe projet constituée pour travailler sur la mise au point de cette nouvelle brique technologique. Dans une première phase, il aura en charge la conception des véhicules de test, le suivi en salle blanche des lots visant à mettre au point les procédés de packaging couche mince, et enfin la réalisation des caractérisations en cours de process. Dans une seconde phase, le candidat optimisera le design des commutateurs MEMS RF en intégrant le packaging couche mince, en particulier il proposera de nouveaux designs visant des applications demandant des tenues à la puissance RF. Enfin, le candidat suivra la réalisation des lots des démonstrateurs de commutateurs en salle blanche, puis il supervisera et participera aux taches de caractérisation sur les composants packagés.

Etude de dégazage des résines pour la lithographie avancée

Le sujet proposé est adressé à un candidat de type post doc. Le sujet est réalisé au sein d’un projet concernant le développement de la lithographie avancée multifaisceaux Ebeam. Dans le cadre de ce projet un équipement Ebeam multifaisceau est développé dans un contexte de partenariat international. Il apparait de fortes contraintes de contamination dues au dégazage des résines lors de leur activation par bombardement électronique. Le sujet proposé abordera les études de contamination des optiques de projection suite au dégazage des résines lors de leur bombardement électronique.
Le candidat sera en charge de réaliser des études de dégazages sur différents échantillons de résines en support à l’équipe "dégazage" déjà existante.
Il mettra en oeuvre des méthodologies développées au sein du Leti (mesure de vitesse de pompage, mesure de dégazage, étude de croissance de couche de contaminants)et apportera sa contribution à l’amélioration de ces méthodes. Il supervisera également la réalisation d’objets utiles aux études de dégazage (simulateur d’optique de projection Ebeam) qui seront réalisés au sein de la plate-forme technologique microelectronique du Leti. Le candidat effectuera la caractérisation du faisceau d’électrons de l’équipement de dégazage et pourra être force de proposition pour sont amélioration. Il prendra également en charge l’observation des couches de contaminants au moyen de microscope électronique.
Le candidat évoluera dans le milieu de la lithographie avancée et sera en contact avec des équipes internationales. Il devra maîtriser l’anglais.

Micro-sources d’énergie pour applications biomédicales

On constate ces dernières années un intérêt croissant pour les systèmes sans fil implantables permettant une détection et un contrôle biomédical in vivo. Cependant, ces dispositifs implantés ont des durées d’utilisation limitées par les performances de stockage des batteries nécessitant une intervention chirurgicale régulière pour le remplacement de celles-ci. Dans le cadre du développement de sa nouvelle activité «microsources d’énergie pour le biomédical», le CEA LITEN (Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux) renforce son équipe système. Le CEA LITEN développe des systèmes miniaturisés innovants intégrant un composant de récupération d’énergie avec une batterie rechargeable. Ce type de micro-systèmes permettra d’alimenter des dispositifs biomédicaux implantés in vivo, comme par exemple des capteurs de glucose capables de mesurer en temps réel le taux de glucose dans le sang d’une personne diabétique. Le post-doctorant sera en charge de la conception, la réalisation et la caractérisation de démonstrateurs intégrant le dispositif de récupération d’énergie, la batterie et une unité de gestion de puissance. Afin de dimensionner le système, des simulations numériques sont également envisagées, en collaboration avec des ingénieurs spécialisés. La caractérisation des démonstrateurs et les résultats des simulations numériques devront permettre au post-doctorant d’apporter des solutions innovantes pour optimiser le système. Le post-doctorant sera amené à travailler au sein d’une équipe dynamique et multidisciplinaire et aura à interagir fortement avec d’autres ingénieurs (matériaux, électronique, etc.) ce qui nécessitera une ouverture d’esprit et des capacités de communication.

Conception de débitmètre ou viscosimètre MEMS de nouvelle génération

Ce sujet de Post-doc répond à de nombreuses demandes d’industriels pour des débitmètres ou viscosimètres travaillant sur une gamme étendue, moins chers et fonctionnant pour différents types de fluides (liquides ou gaz).
L’objectif ce post-doc est de réfléchir à la conception d’un capteur MEMS permettant la mesure de débit ou de la viscosité de tout type de fluide répondant aux spécifications fournies par les industriels.
En particulier il s’agira d’explorer les possibilités d’une utilisation du capteur de type "clou" (micro-capteur de force 3 axes) en exploitant la force de trainée ou les contraintes tangentielles proches des parois des canalisations qui devront être évaluées en fonction des régimes d’écoulement des différents fluides.
Il s’agira de dimensionner et modéliser le capteur et de déterminer les interactions avec les fluides et les caractéristiques des forces en jeu selon les différents régimes d’écoulement.
Le candidat devra posséder de solides connaissance en fluidique et en microsystèmes.

Etude et évaluation d’un micro résonateur thermique pour l’imagerie infrarouge non refroidie

Le projet concerne l’étude de faisabilité d’un microbolomètre infrarouge exploitant la sensibilité thermique d’un micro nano système mécanique (M & NEMS), mis en auto oscillation et dont la fréquence de résonance change avec le flux infrarouge qu’il absorbe. Il s’agit d’un concept en rupture qui a fait l’objet de trois dépôts de brevet.
Le projet adresse les besoins de l’imagerie infrarouge non refroidie haute résolution (bande spectrale de 8µm à 12µm) qui est en pleine expension mais dont les prochaines générations de produits attendent une rupture technologique pour réduire la taille du pixel, facteur clef pour améliorer la performance et réduire le coût de ces imageurs.
L’objectif de l’étude post doctorale est de réaliser une preuve de concept de cette nouvelle architecture. Elle vise le dimensionnement, la conception, la réalisation et la validation d’un pixel infrarouge unitaire.

Conception de modules photoniques intégrés

La conception de modules de transmission optiques de nouvelles génération (en particulier modules transceivers optiques sur carte) met en jeu l’association de deux technologies de pointes développées au Leti : la photonique sur silicium et le packaging silicium 3D.
Afin de répondre aux objectifs de ces modules en terme de performance, coût et densité, il est nécessaire de réaliser un désign prenant en compte toutes les contraintes techniques: mécanique, optique, thermique mais surtout électronique/RF.
La mission proposée consiste à concevoir de tels modules en optimisant les interconnexions RF internes et externes du module, et la bonne mise en oeuvre des éléctroniques (ASICs) intégrés. La simulation de plusieurs architectures concurrentes (e.g. avec les logiciels HFSS et ADS) permettra d’orienter les choix techniques.
Enfin, il faudra également assurer leur mise en oeuvre dans un système et leur caractérisation en préparant les cartes et bancs de test associés.

Top