Intgération 3D séquentielle

L’intégration 3D est actuellement très étudiée car elle offre une solution pour continuer d’augmenter la densité de transistor par unité de surface (More Moore) tout en réduisant les contraintes de réduction des dimensions des transistors. Elle permet aussi de faciliter la co-intégration de technologies très hétérogènes (More than Moore). La 3D séquentielle permet d’utiliser tout le potentiel de la 3D en connectant les couches empilées au niveau du transistor. Elle se distingue de l’intégration 3D parallèle (3D TSV) qui est limitée à interconnecter des blocs comprenant des milliers de transistors. L’expertise du Leti dans ce domaine est reconnu grâce à la démonstration de structures fonctionnelles en 200mm. Le travail du post doc consiste en la réalisation d’un démonstrateur en 300mm pour des nœuds plus avancées incluant de nouveaux modules, comme par exemple des lignes inter-niveaux métalliques qui permettrait d’empiler plus de trois niveaux avec cette intégration.

Collage direct cuivre et sa fiabilité

La brique technologique de collage direct du cuivre (copper direct bonding en anglais) est l’une des approches les plus prometteuses concernant l’intégration 3-D. Le procédé de fabrication est mature comme présenté par divers travaux pour des approches plaque à plaque (wafer to wafer ou W2W en anglais) mais également dans le cas du puce à plaque (die to wafer ou D2W en anglais). Cependant, sa fiabilité est encore à démontrer même si des premiers résultats montrent que l’approche est prometteuse.

L’objectif de ce post-doc sera de conforter ces premiers résultats obtenus en W2W d’une part et d’autre part, d’étudier la fiabilité de l’approche D2W vis-à-vis des phénomènes d’électromigration et de stress induced voiding.
Le candidat aura en charge toute l’étude de fiabilité en commençant par le lancement des essais et l’analyse des résultats qui en découleront, l’analyse de défaillance (optique, IR, MEB, FIB,…), la détermination du/des mécanismes de dégradation.
Le candidat collaborera avec les doctorants travaillant sur le collage direct du cuivre et son intégration dans des dispositifs. Grâce à son expertise, il proposera des voies d’amélioration du procédé aussi bien d’un point de vue du procédé de fabrication que d’un point de vue géométrique.

Caractérisation électrique et modélisation de mémoires CBRAM (Conductive Bridge Random Access Memory)

Les mémoires CBRAM sont parmi les technologies les plus prometteuses comme alternative aux technologies Flash qui présentent des limites vis-à-vis des futures réductions de dimensions. Les CBRAM ont une structure de type capacitive, où un matériau chalcogénure est pris en sandwich entre une anode active en argent et une cathode inerte. En polarisant la cellule, les ions argent diffusent dans la matrice et atteignent la cathode où ils sont réduits. Un pont conducteur est formé dans la structure, créant une diminution de résistance. Ces structures peuvent fonctionner à très faible tension (~1V).
L’objectif principal du post doc est de mener les études de caractérisation électrique et la compréhension physique associée. L’objectif final est une forte amélioration des caractéristiques d’écriture, d’effacement, de cyclage, de retention d’information. Dans ce but des études approfondies seront menées, en particulier de la conduction et de la retention (mesures en température, lien entre courants et ions diffusées dans la matrice via un premier niveau de modélisation, …) Le candidat adressera à la fois les problèmes hardware et les méthodologies de test. Il étudiera diverses conditions de procédés, de géométries, d’architectures. Une forte interaction sera toujours recherchée avec les spécialistes de la caractérisation physico chimique pour une meilleure connaissance intime des matériaux et cellules.

Intégration de couches poreuses pour la réalisation de substrats temporaires avancés

Aujourd’hui, la course effrénée à la miniaturisation entraine des schémas d’intégration qui convergent vers des solutions de double report de films minces monocristallins permettant d’assurer une fonctionnalisation des deux faces du film augmentant ainsi la compacité et la performance des systèmes. Une solution disruptive a récemment été développée au sein du CEA-Léti basée sur l’introduction de couche en silicium poreux au cœur des procédés de fabrication des composants [a]. Ce type de technologie laisse présager un intérêt certain pour des applications de type électronique, MEMS ou encore photovoltaïque, et il convient donc désormais de valider cette technologie à plus large échelle et de cerner les mécanismes mis en jeu notamment lors de la rupture dans la couche poreuse.
Le candidat devra appréhender les spécificités des couches poreuses et de l’ensemble des étapes de réalisation nécessaires au report de film minces afin de valider et de mettre en place leur intégration au sein de démonstrateurs spécifiques qui auront été choisis. Une partie importante du travail portera sur une évaluation et une analyse scientifique du comportement des couches poreuses lors de sollicitation chimique, mécanique et/ou thermique par exemple en vue de forcer une reconstruction de surface des films poreux. Un autre axe d’étude portera sur le développement d’une technologie spécifique pour induire la rupture mécanique au sein de la couche poreuse enterrée. Le candidat devra évaluer la faisabilité d’une rupture par ultrasons et en étudier les mécanismes. Une partie importante des développements consistera également à caractériser finement les propriétés des films et des structures élaborées.
[a] A-S.Stragier et al., Journal of The Electrochemical Society, 158 (5) H595-H599 (2011)

Modélisation de composants et fonctions électroniques en environnement

L’objectif du travail sera de proposer une méthodologie de modélisation des composants élémentaires à semi-conducteur (transistors - diodes) prenant en compte leurs dégradations permanentes après irradiation ou les effets transitoires pendant l'irradiation. Ces modélisations seront d'abord réalisées au moyen de codes de simulation standard basés sur le langage Spice et sur des bibliothèques existantes de modèles fonctionnels des composants. Par la suite, des nouveaux modèles de composants seront à développer dans un environnement logiciel à définir pour parvenir à une simulation plus réaliste et optimisée des électroniques sous contraintes radiatives. Les données d’entrée seront issues de la littérature, d’expérimentations passées et d’expériences spécifiques à réaliser dans le cadre du post-doc. Une approche générique d'une méthode de caractérisation expérimentale sera à développer afin de déterminer les paramètres d'un modèle de composant dans un environnement radiatif donné. Les modèles radiatifs seront à valider pour différentes technologies de composants par comparaison entre la simulation et l'expérience.

Etude des contraintes thermomécaniques sur transistor HEMT AlGaN/GaN sur silicium.

Les procédés de fabrication utilisés pour les HEMT AlGaN/GaN sont complexes et entrainent la formation de nombreux défauts cristallins. Ces contraintes présentes dans la couche GaN peuvent engendrer des fissurations dans le film GaN ou des délaminations aux interfaces supérieures. D’autre part, ces contraintes mécaniques couplées à des contraintes thermiques de fonctionnement risquent de conduire à une fragilité et à une dégradation des performances électriques du dispositif. Cet assemblage hétérogène présente un comportement complexe. Les matériaux utilisés réagissent différemment aux contraintes thermomécaniques.
Le travail de ce postdoc consiste à étudier et à modéliser les déformations de cet ensemble, afin d’évaluer l’impact de ces contraintes sur les performances électriques des dispositifs latéraux et verticaux

Architecture numérique de contrôle de Qubits passant à l’échelle pour l’ordinateur quantique

Le passage à l’échelle de l’accélérateur quantique à plusieurs centaines de Qubits impose de revoir l’architecture de contrôle de la matrice en la répartissant entre les parties cryogéniques (sub-K et 4K) et l’extérieur du cryostat à température ambiante. En effet, un certain nombre de contraintes liées à l’utilisation d’un cryostat (thermiques, mécaniques) et aux propriétés des Qubits (nombre, fidélité, topologie) influent sur les choix architecturaux tels que le contrôle des Qubits, le jeu d’instructions, le stockage des mesures, le parallélisme des opérations ou la communication entre les différentes parties de l’accélérateur par exemple. L’objectif de ce post-doctorat est de définir l’architecture hors-cryostat à moyen (100-1000 Qubits) et long terme (plus de 10 000 Qubits) en partant des interfaces logicielles existantes dans les intergiciels de programmation quantique et en prenant en compte les contraintes du réseau de Qubits physiques développé au LETI.

Design des différents blocs d'un algorithme de calcul hyperdimensionel au sein de matrices mémoires non-volatiles

Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd’hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory Computing »). Dans le cadre de ce projet Carnot, nous proposons d’étudier la théorie du calcul hyper-dimensionnel (HDC) qui est aujourd’hui envisagée pour répondre au besoin de l’apprentissage machine dans le domaine de l’intelligence artificielle. Pour tester cette théorie, nous proposons de l’appliquer à la détection et à la classification de signaux physiologiques pour la reconnaissance de gestes. Ce domaine de recherche très prometteur pour les applications liées à l’interaction homme-machine, donne la possibilité a un utilisateur d’interagir directement par son activité musculaire.
Par rapport aux autres méthodes de classification, le calcul HDC présente des atouts importants : il est simple dans le sens où il s’appuie sur des opérations élémentaires, une seule passe est nécessaire pour l’entrainement (donc pas de rétro-propagation avec une mise à jour de poids synaptiques). Le fait qu’une entité soit représentée sur un vecteur de grande dimension (hyper-vecteur) rend cette approche peu sensible aux erreurs et aux bruits, ce qui représente un atout majeur pour travailler avec des signaux physiologiques.

Simulation de cellules solaires silicium à partir de matériau de type n : modélisation et optimisation de l’architecture.

Des technologies de fabrication de cellules à base de silicium de type n sont en cours de développement à l’INES. Le travail de simulation des cellules photovoltaïques permet d’accélérer le développement de nouvelles filières à plusieurs niveaux : interprétation physique des résultats de caractérisation, aide à la conception des dispositifs, optimisation des procédés et exploration de concepts originaux. Le sujet du post-doc est centré sur l’étude des modèles semi-empiriques pour les matériaux et les procédés utilisés pour les cellules de type n. Ces briques élémentaires seront mises en oeuvre dans un modèle complet résultant de leur assemblage de type circuit avec un outil de simulation muulti-échelle. Au final, un tel outil permettra d’optimiser la structure géométrique de l’émetteur de type p, de l’efficacité de collecte des porteurs de la face arrière et de la géométrie des contacts électriques métalliques.

Modélisation et Contrôle de la Fréquence et de la Tension dans des architectures GALS en présence de variabilité du process et de variations de tension et de température

L’évolution des technologies sub-microniques a induit des défis majeurs auxquels doit faire face le concepteur, à savoir, la gestion de la variabilité au sein de la puce (ou inter-puces) et la réduction de la consommation. Ces deux défis peuvent être traités par des techniques de "DVFS" (Dynamic Voltage and Frequency Scaling) : la puce est découpée en plusieurs zones de tension-fréquence à réguler compte tenu de références fixées par un superviseur qui prend en compte les contraintes de l’application et les capacités de la plateforme matérielle.
L’objectif de ce travail de post-doctorat est de revisiter les approches DVFS. Dans un premier temps, on effectuera une modélisation physique fine du système à réguler. On proposera ensuite des lois de contrôle non-linéaire qui prennent en compte les saturations des actionneurs, compte tenu d’un cahier des charges donné par des concepteurs de circuit. Les lois de contrôle devront tenir compte des contraintes d’implémentation sur une plateforme. Les performances de ces lois en asservissement et en régulation seront évaluées sur simulateur.
Le problème d’asservissement et régulation de la tension et de la fréquence est en fait intrinsèquement Multi-Entrées-Multi-Sorties (MIMO). On exploitera donc des techniques de contrôle MIMO pour répondre au cahier des charges fixé par les concepteurs de circuit.
Enfin, le contrôle de différentes zones VF est généralement piloté par un unique organe de décision. On réfléchira à des méthodologie de contrôle distribué qui prennent en compte par exemple l’état des zones voisines à la zones VF contrôlée.

Top