Post-doc en simunlation numérique 2D de cellules solaires tandem perovskite/heterojonction de silicium
Le CEA-INES recherche un(e) post-doctorant(e) pour travailler sur la simulation 2D de cellules solaires tandem pérovskites/hétérojonction silicium. Le candidat aura la responsabilité de développer un modèle de la cellule tandem PK/SHJ sur le progiciel de simulation TCAD Silvaco. Une description réaliste des matériaux sera mise en œuvre, basée sur une caractérisation interne des couches réellement utilisées (potentiellement réalisée lors du post-doc), ou sur la base de la littérature. Ensuite, l'accent sera mis sur l'ajustement de l'interface entre les deux sous-cellules (dite jonction de recombinaison, ou jonction tunnel). Ce modèle sera ensuite utilisé pour améliorer notre compréhension du principe de fonctionnement des cellules tandem. En particulier, l'inhomogénéité des propriétés des couches, les défauts et leur influence sur le rendement des cellules seront étudiés et confrontés aux résultats expérimentaux. Enfin, des stratégies pour atténuer l'influence de ces défauts seront définies pour aider les équipes de développement à augmenter le rendement des dispositifs sur de grandes surfaces. Pour ce poste postdoctoral, le candidat doit avoir une solide expérience en physique des semi-conducteurs, ainsi qu'une expérience préalable dans l'utilisation d'outils de simulation. Il/Elle aura besoin de solides compétences organisationnelles et sera disposé à mener des travaux théoriques. Les résultats seront publiés dans des revues à comité de lecture, ainsi que lors de conférences.
Modélisation des dégradations induites par le potentiel dans les modules photovoltaïques moyenne tension
La technologie des centrales PV moyenne tension (MT) s'inscrit dans le cadre de PV EVERYWHERE. Cette stratégie permet de diminuer les coûts des centrales grâce à la diminution du nombre de câbles et de leur sections ainsi que d'une infrastructure plus simple à opérer. Pour permettre ces gains, il est nécessaire de disposer de modules MT résistants jusqu'à 9 kV.
Les objectifs de ce projet sont : (i) développer un modèle physique pour rendre compte des dégradations des modules PV en fonction des niveaux de tension lors de son fonctionnement, (ii) définir des protocoles de tests pour les matériaux constitutifs des modules PV pour fournir les données d'entrée des modèles, (ii) fabriquer un module PV résistant aux dégradations PID.
Le projet débutera par une phase de développement des protocoles de tests pour alimenter les modèles de transport ioniques qui nous permettront de décrire les modes de dégradation attendus en fonction de la composition du module. Grâce aux résultats obtenus de la simulation, les pistes de solution évoquées seront testées pour identifier les matériaux adéquats pour aboutir à la fabrication d'un module résistant à la MT jusqu'à 9 kV.
Conception du packaging des modules PV de haute performance
La durée de vie de nouvelles générations de modules photovoltaïques est de 25-30 ans en conditions externes. Le packaging joue un rôle critique pour répondre à ses exigences de fiabilité et de durabilité. Les cellules solaires sont protégées par du verre en face avant et des couches plastiques complexes sont employées comme encapsulant en face avant et arrière, en contact avec la face arrière. Les encapsulants ont de multiples rôles; forment une couche barrière contre l’humidité, oxygène, radiation ultra-violet, assurent l’isolation électrique et la protection mécanique des plaquettes de silicium fragiles tout en gardant une transparence optique élevée. Le procédé de fabrication industriel des modules est la lamination, qui impose des exigences supplémentaires pour la formulation des encapsulants.
L’objectif de ce post-doc est d’établir une corrélation entre les propriétés des matériaux, leur mise en forme et le comportement thermo-mécanique des modules innovants avec des cellules hétérojonctions, back-contact ou silicium/pérovskite tandems. La caractérisation avancée des polymères sera étroitement déployée lors de cette étude utilisant notamment DSC, DMA, adhésion, ATG, WVTR, extraction Soxhlet etc. La corrélation entre les paramètres de la lamination et la tenue mécanique des panneaux constituera un des axes majeurs de recherche. Le choix des encapsulants et de tous les matériaux sera fortement guidé par l’éco-conception pour réduire l’impact environnementale du packaging et augmenter la recyclabilité, et renforcer le ré-emploi des plastiques. Ce post-doc s’inscrit dans une collaboration européenne sur le sujet.
Développement de matériaux silicium résistants aux irradiations et intégration dans des cellules photovoltaïques pour applications spatiales
Historiquement, le photovoltaïque (PV) s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires multi-jonctions, basées sur un empilement de matériaux III-V, ont progressivement remplacé le silicium (Si), bénéficiant de performances et de tenues aux irradiations électrons/protons supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût (€/W Si ~ III-V/500), émergence de nouvelles technologies Si qui présentent des rendements élevés sur Si de type p… Dans l’espace, les cellules solaires PV sont exposées aux rayonnements cosmiques, notamment aux bombardements par des protons et électrons. Ces irradiations affectent les performances des cellules Si, essentiellement en raison de la formation de défauts volumiques recombinants pour les porteurs de charge. Afin de favoriser l’utilisation de cellules Si dans l’environnement spatial, il est donc essentiel d’améliorer leur résistance aux irradiations. Il s’agit du principal enjeu de ce projet de post-doc. Pour cela, les travaux vont tout d’abord se concentrer sur l’élaboration d’un nouveau matériau silicium, avec des propriétés compositionnelles lui conférant une résistance accrue aux irradiations par les électrons. Plus précisément, le matériau contiendra des éléments limitant la formation de défauts volumiques sous irradiations, et développant des effets de passivation électrique. Les propriétés électroniques de ce matériau seront évaluées et analysées avant et après irradiation. Dans un second temps, des cellules haut rendement à hétérojonction seront élaborées à partir de ce silicium inédit, et leurs performances électriques évaluées et analysées avant et après irradiation. Les développements pourront être appuyés par des simulations numériques, effectuées à l’échelle des dispositifs PV.
Irradiations de cellules silicium haut rendement pour le spatial
Historiquement, le photovoltaïque s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires III-V multi-jonctions ont progressivement remplacé le silicium, bénéficiant de performances et tenue aux irradiations supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût & performante (type-p > 26% AM1.5g). Cependant, pour les cellules Si les méthodes et séquences de vieillissement sous irradiations classiques (ECSS) sont moins appropriées. La littérature datant principalement des années 1980 – 2000, il faudra revisiter la thématique avec les cellules Si dernière génération à contacts passivés (élaborées à l’INES) et les moyens uniques d’irradiation double faisceau du CEA (plateforme JANNuS du CEA Saclay).
Ces travaux s’inscrivent dans le cadre du projet SiNRJs à l’interface entre deux directions du CEA, sur les thématiques photovoltaïques spatial & irradiations matériaux. L’approche scientifique et technologique adoptée: 1. Fabrication de cellules Si à contacts passivés (HeT et/ou Poly-Si) d’épaisseur variable 2. Caractérisations optoélectroniques des propriétés des cellules avant irradiations (IV AM1.5/AM0, EQE, etc.) 3. Irradiations protons des cellules et échantillons, caractérisations in situ (Raman et Electroluminescence) 4. Caractérisations ex situ des propriétés optoélectroniques des cellules après irradiations (IV AM1.5/AM0, EQE, etc) 5. Analyse et synthèse des résultats. Scientifiquement, les verrous à lever concernent donc la compréhension des mécanismes/dynamiques de création/guérison de défauts sous cette double excitation électronique et balistique.
Système de charge solaire décentralisé pour la mobilité durable en Afrique rurale
Une nouvelle station de recharge solaire autonome (SASCS) sera déployée en Éthiopie. Étant donné que 45 % de la population de l'Afrique subsaharienne n'a pas d'accès direct aux réseaux électriques et que l'infrastructure nécessaire pour exploiter de manière fiable d'autres sources d'énergie est largement inexistante pour bon nombre de ces populations en Éthiopie, l'introduction de la SASCS dans certaines communautés rurales du pays est un effort nécessaire. Il pourrait revigorer le secteur agricole des communautés et soutenir ceux dont l'emploi est lié à l'agriculture. Un SASCS pourrait également servir à intégrer les énergies renouvelables dans le mix électrique existant du pays. Le CEA INES agira en tant que partenaire-conseil pour la conception et la mise en œuvre de la solution (les batteries de seconde vie, le solaire seront étudiés). En outre, en raison de l'expertise établie du CEA INES dans l'installation d'outils solaires au sein de diverses communautés, l'initiative fournira également un savoir-faire pour l'installation du SolChargE en Ethiopie et coopérera à l'organisation d'ateliers pour les étudiants et les techniciens employés par le projet.