Conception d'electro-aimants pour expériences plasmas magnétisés sur l'installation laser LMJ-PETAL

Dans le but d'augmenter les capacités de l'installation LMJ-PETAL notamment dans les domaines de la Fusion par Confinement Inertiel, la génération de sources de rayonnement et l'astrophysique, le CEA, avec le soutien de la région Nouvelle Aquitaine, vient de réaliser l'étude de faisabilité d'un système additionnel permettant la réalisation d'expériences sous champ magnétique intense (qq. 10T). La poursuite du projet en vue d'une intégration sur l'installation fait l'objet d'une collaboration entre plusieurs départements du CEA mais également avec d'autres laboratoires français (LULI, CELIA) ou étrangers (Japon, USA).
Le système de génération de champ magnétique est constitué essentiellement d'une bobine (électro-aimant) consommable positionnée autour de la cible laser et alimentée par un banc d'énergie via une ligne de transmission. La poursuite du projet nécessite un travail approfondi de conception des bobines qui devront posséder les performances requises en termes de champ magnétique généré (intensité, volume magnétisé, homogénéité spatiale et stabilité temporelle) tout en étant adaptées à la fois aux caractéristiques de l'alimentation électrique impulsionnelle de forte puissance (~10µs, qq. 10kA et qq. 10kV) et aux contraintes expérimentales d'une très grande installation laser (intégration en centre chambre d'expérience, alignement, risque débris, sûrété nucléaire...).

Simulation des écoulements multiphasiques réactifs gaz-liquide

L'objectif de ce travail postdoctoral est de développer et mettre en œuvre une méthode de simulation pour la modélisation d'incendies provoqués par une pulvérisation de sodium. Pour cela, deux aspects du problème sont à considérer: tout d'abord, il est nécessaire de proposer une représentation adéquate des gouttelettes de sodium (phase dispersée) depuis leur génération par un jet (phase séparée) jusqu'à leur comportement (mouvement, oxydation, combustion) dans l'atmosphère. Cela nécessite de dériver un modèle d'écoulement' prenant en compte plusieurs composants avec plusieurs régimes topologiques d'interface (dispersé et séparé). Deuxièmement, il est nécessaire de développer une stratégie de discrétisation robuste pour ce modèle d'écoulement complexe.

Le travail numérique sera mis en œuvre dans un nouvel outil numérique pour effectuer des simulations d'incendies provoqués par la pulvérisation de sodium développé au CEA. Cet outil est basé sur la bibliothèque CanoP. Canop est une bibliothèque conçue pour résoudre des problèmes de dynamique des fluides numériques en utilisant une approche de raffinement de maillage adaptatif basée sur des cellules et un calcul parallèle.

Mise au point, validation métrologique et essais en milieu extérieur d'une unité de mesure Raman/FO multitrack dédiée à la sécurité de futures stations cryogéniques de distribution d’hydrogène liquide

Contexte : Les usages domestique et industriel de l’hydrogène liquide comme carburant du futur nécessitent de définir un code de sécurité adapté. Actuellement, les critères de séparation des réservoirs ont été définis par anticipation selon une approche conservatoire. Il est donc nécessaire de réaliser des expériences en vraie grandeur (épandages) afin d’alimenter des codes de calculs et bâtir une normalisation pertinente. Ces expériences requièrent la mise en œuvre d’une instrumentation adaptée à la mesure de tous les gaz présents en espace libre (O2, N2, H2O, H2) afin d’établir un relevé de pressions partielles au cours de chaque essai, corrélé aux autres moyens de mesure mis en place (thermométrie, catharométrie, PIV, BOS,…).
Mission : Dans le contexte d’un projet ANR-PEPR (ESKHYMO) géré par le CEA Liten, une unité de mesure spectrométrique Raman/FO Multitrack sera mise au point conjointement par le CEA List et le CEA DES sur la base d’un dispositif existant. La mesure Raman est multi-élémentaire, multi-track (une seule unité de mesure pour plusieurs sondes), non-déflagrante, et délivre une mesure autonormalisée à une espèce de référence (le plus souvent l’azote à la pression atmosphérique). L’unité de mesure Raman/FO comportera un laser, un spectromètre associé à une caméra CCD scientifique et un circuit de fibres optiques permettant le déport de la mesure. La conception des sondes Raman/FO sera également basée sur une réalisation existante au CEA que l’on cherchera à miniaturiser en vue d’un déploiement en conditions de terrain. Quatre sondes Raman/FO seront réalisées puis ensuite étalonnées en air (enceinte climatique) et en hydrogène (tube à choc ou chambre à vide) au CEA DES DM2S à Saclay. Finalement, le dispositif final sera déployé sur site d’essai pour procéder à des mesures multigaz lors des expériences d’épandage, en partenariat avec l’industriel Air Liquide et les organismes accréditeurs (INERIS).
Compétences : Optique, laser, fibres optiques

Développements expérimentaux et technologiques d’un procédé de minéralisation de déchets liquides organiques par plasma

Le procédé ELIPSE développé au CEA permet la destruction des liquides organiques par injection dans un plasma de forte puissance.
Si la faisabilité de destruction de différents composants organiques à des débits de quelques litres par heure est aujourd’hui démontrée, les essais doivent maintenant être approfondis pour des liquides organiques de références pertinemment choisis en fonction des gisements existants.
Ces études, sur la base des données de caractérisations des LOR (Liquides Organiques) choisis, auront pour objectif d’apporter des résultats de procédé détaillés obtenus avec des conditions opératoires les plus représentatives, pour permettre une évaluation complète et quantitative du procédé. Cela permettra d’établir des données d’exploitation, de robustesse et d’endurance du procédé.
Ces travaux incluront l’étude du comportement des radioéléments dans le procédé qui sera indispensable à l’étude de nucléarisation : il s’agira d’étudier le comportement physico-chimique des actinides lors de leur traitement via l’utilisation de simulants inactifs.

Cascade de circulicité en turbulence compressible

Dans le cadre de ce post-doctorat, nous proposons d'étudier les propriétés des petites échelles d'une turbulence homogène compressible forcée, et cela au travers de relations statistiques exactes de type Monin-Yaglom. L'idée, détaillée dans la référence [1], est de comprendre comment s'organise le transfert de circulicité dans la zone inertielle. La circulicité est une grandeur associée au moment angulaire et, par extension, aux mouvements tourbillonnaires. L'analyse de ses propriétés inertielles permet de compléter la description de la cascade d'énergie déjà mise en évidence dans de précédents travaux [2,3].

L'objectif du post-doctorat sera de réaliser et d'exploiter des simulations directes de turbulence compressible homogène avec forçage, de façon à mettre en évidence les propriétés inertielles de la circulicité.

Pour cela, le(la) post-doctorant(e) disposera d'un accès au très grand centre de calcul (TGCC) ainsi que d'un code, Triclade, résolvant les équations de Navier-Stokes compressibles [4]. Ce code ne possède pas de mécanisme de forçage et la première tâche du(de la) post-doctorant(e) consistera donc à ajouter cette fonctionnalité. Une fois cette tâche accomplie, des simulations seront réalisées en faisant varier la nature du forçage et notamment le rapport entre ses composantes solénoïdales et dilatationnelles. Ces simulations seront ensuite exploitées en analysant les termes de transfert de la circulicité.

[1] Soulard and Briard. Submitted to Phys. Rev. Fluids. Preprint at arXviv:2207.03761v1
[2] Aluie. Phys. Rev. Lett. 106(17):174502, 2011.
[3] Eyink and Drivas.Phys. Rev. X 8(1):011022, 2018.
[4] Thornber et al. Phys. Fluids 29:105107, 2017.

Système de charge solaire décentralisé pour la mobilité durable en Afrique rurale

Une nouvelle station de recharge solaire autonome (SASCS) sera déployée en Éthiopie. Étant donné que 45 % de la population de l'Afrique subsaharienne n'a pas d'accès direct aux réseaux électriques et que l'infrastructure nécessaire pour exploiter de manière fiable d'autres sources d'énergie est largement inexistante pour bon nombre de ces populations en Éthiopie, l'introduction de la SASCS dans certaines communautés rurales du pays est un effort nécessaire. Il pourrait revigorer le secteur agricole des communautés et soutenir ceux dont l'emploi est lié à l'agriculture. Un SASCS pourrait également servir à intégrer les énergies renouvelables dans le mix électrique existant du pays. Le CEA INES agira en tant que partenaire-conseil pour la conception et la mise en œuvre de la solution (les batteries de seconde vie, le solaire seront étudiés). En outre, en raison de l'expertise établie du CEA INES dans l'installation d'outils solaires au sein de diverses communautés, l'initiative fournira également un savoir-faire pour l'installation du SolChargE en Ethiopie et coopérera à l'organisation d'ateliers pour les étudiants et les techniciens employés par le projet.

Convection naturelle à haut Rayleigh pour la Securité des réacteurs: 2ème année

Le postdoc est associé à la deuxième année du projet CORAYSE. La sécurité des réacteurs de type SMR est basée sur des systèmes passifs : le réacteur est placé dans une piscine où la chaleur résiduelle est évacuée par convection naturelle en cas d’accident. Toutefois à ce jour on n’appréhende pas, ni par le calcul ni sur la base d’expériences, l’échange thermique entre le réacteur et l’eau, car la convection naturelle n’a fait l’objet de corrélations d’échange thermique que jusqu’à des nombres de Rayleigh Ra de 10^12 (le nombre de Rayleigh Ra décrit le rapport entre le transport par convection naturelle et le transport diffusif). Pour un SMR, ce Ra peut dépasser 10^16. La maitrise par des calculs numériques et des expériences est donc un enjeu majeur de sécurité. Un tel objectif nécessite toutefois que plusieurs défis soient relevés :
• Un défi numérique : la capacité du code à modéliser de manière suffisamment précise et dans un temps raisonnable des écoulements turbulents à très haut nombre de Rayleigh est encore du domaine de la recherche. La simulation numérique aux plus hauts Ra envisagés représente un défi en termes de temps calcul, nécessitant des simulations sur des calculateurs « exascale ». Une adaptation des codes existants à cette situation est donc indispensable.
• Un défi expérimental : au niveau de la validation du code, la réalisation d’une expérience représentative, dans laquelle un nombre de Rayleigh supérieur à 10^16 puisse être atteint, nécessite une expérience à l’échelle 1 (donc très onéreuse), ou bien une expérience avec un autre fluide – par exemple l’hélium liquide - dont les propriétés physiques (viscosité, dilatation thermique,…) permettront d’atteindre en laboratoire des Rayleigh comparables.

Modélisation CFD des mouvements de gaz en cavités salines

Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.

Développement et application des méthodes de quantification inverse d'incertitudes pour la thermohydraulique dans le cadre du projet OECD/NEA ATRIUM

Concernant les méthodologies BEPU (Best Estimate Plus Uncertainty) pour l'analyse de sûreté des centrales nucléaires, l'une des questions cruciales est de quantifier les incertitudes d'entrée associées aux modèles physiques dans le code. Une telle quantification consiste à évaluer la distribution de probabilité des paramètres d'entrée nécessaires à la propagation de l'incertitude par une comparaison entre les simulations et les données expérimentales. Elle est généralement appelée Quantification d'Incertitude Inverse (IUQ).
Dans ce cadre, le Service de Thermohydraulique et Dynamique des Fluides (STMF) du CEA-Saclay a proposé un nouveau projet international au sein du groupe de travail WGAMA de l'OCDE/NEA. Il s'agit d'ATRIUM (Application Tests for Realization of Inverse Uncertainty quantification and validation Methodologies in thermal-hydraulics). Ses principaux objectifs sont de réaliser un benchmark sur des exercices pertinents de quantification de l'incertitude inverse (IUQ), de prouver l'applicabilité de la ligne directrice SAPIUM et de promouvoir les meilleures pratiques pour l'IUQ en thermohydraulique.
Il est proposé de quantifier les incertitudes associées à certains phénomènes physiques pertinents lors d'un accident de perte de réfrigérant (LOCA) dans un réacteur nucléaire. Deux exercices IUQ principaux de complexité croissante sont prévus. Le premier concerne l'écoulement critique à la rupture et le second est lié aux phénomènes de transfert thermique post-CHF. Une attention particulière sera consacrée à l'évaluation de l'adéquation des bases de données expérimentales pour l'extrapolation à l'étude d'un APRP dans un réacteur à échelle réelle. Enfin, les incertitudes du modèle d'entrée obtenues seront propagées sur un test d'effet intégral (IET) approprié pour valider leur application dans des expériences à plus grande échelle et éventuellement justifier l'extrapolation à l'échelle du réacteur.

Modélisation thermo-aéraulique d’un réacteur d’incinération

Le laboratoire des Procédés Thermiques Innovants (LPTI) du CEA Marcoule développe un procédé d’incinération-vitrification In-Can (PIVIC) visant le traitement des déchets mixtes organiques/métalliques générés par les installations de production du combustible MOX. Le programme de développement de ce procédé s’appuie sur des essais réalisés sur prototype échelle 1 mais également sur l’exploitation de l’outil de simulation numérique.
Le modèle thermo-aéraulique du réacteur d’incinération PIVIC, développé sous le logiciel Ansys-Fluent est bâti sur une articulation de modèles élémentaires (plasma, pyrolyse, combustion, transport particulaire).
Le travail proposé consiste à perfectionner le modèle, notamment en ce qui concerne les composantes pyrolyse/combustion : complexification de la chimie réactionnelle, prise en compte du caractère instationnaire du processus… Le niveau de représentativité du modèle thermo-aéraulique sera évalué sur la base d’une étude comparative exploitant des données expérimentales issues d’essais sur prototype. Parallèlement à ces travaux de développement, différentes études paramétriques seront réalisées afin de tester l’impact de certaines modifications de configuration du réacteur.
En plus des aspects de maîtrise et pilotage de l’incinération, un autre enjeu majeur du projet consiste à évaluer le taux d’encrassement radiologique des parois du réacteur lors de l’incinération d’un déchet contaminés en émetteurs alpha. L’évaluation de cet encrassement radiologique du réacteur s’appuiera sur un modèle d’entraînement particulaire (DPM) associé à un modèle d’interaction pariétal. Les résultats de simulation de taux d’encrassement seront confrontés à des données expérimentales issues d’analyses de dépôts collectés sur les parois du réacteur (essais réalisés en inactif avec simulants d’actinides). Ce travail comparatif pourra donner lieu à des modifications du paramétrage du modèle physique.

Top