Conception d’une chaîne de vélocimétrie hétérodyne dans l'infrarouge moyen pour les hautes vitesses
Ce post-doctorat vise à concevoir au moyen de briques technologiques innovantes un diagnostic de vélocimétrie hétérodyne fonctionnant dans l'infrarouge moyen (entre 3 µm et 5 µm) pour sonder des nuages de particules denses et se déplaçant à des vitesses élevées (jusqu'à 5000 m/s), en physique des chocs. Schématiquement, on fait interférer sur un photodétecteur relié à un numériseur deux ondes laser légèrement décalées en fréquence, l’une sert de référence et l’autre porte l’information de vitesse de l’objet visé, par effet Doppler. Le développement de nouveaux composants optiques et de technologies de pointe dans cette gamme de longueurs d'onde est actuellement en plein essor, pour des applications dans la Défense, la détection de gaz, etc... Dans une première phase de conception, le (la) candidat(e) devra donc identifier et choisir les composants photoniques les plus pertinents pour notre besoin. Il (elle) devra pour cela optimiser les performances globales de la chaîne de mesure, en s'appuyant sur des outils de simulation du commerce ou développés au CEA-DAM. Dans un deuxième temps, il (elle ) constituera la chaîne de mesure avec les éléments optiques retenus. Il (elle) pourra également être amené(e) à participer au dimensionnement et à la fabrication d'éléments mécaniques de précision pour assurer l'interface entre les éléments. Suivant l'état d'avancement, le système ainsi conçu pourra être déployé sur des expériences dédiées. Ce travail pourra faire l'objet de publications.
Développement d’un outil de spectrométrie neutron pour la caractérisation de sources neutroniques à base de radionucléides
Depuis quelques années, le LNHB développe un nouveau dispositif de spectrométrie neutron baptisée AQUASPEC et dédié la caractérisation de sources neutrons à base de radionucléide (ex. AmBe, PuBe, Cf-252). Le dispositif est constitué d'un récipient en polyéthylène, équipé d’un canal central dans lequel la source est placée, et de 12 voies de mesures pouvant accueillir des détecteurs (scintillateur plastique (SP) discriminant dopé au 6Li). Lors de la mesure, le récipient est entièrement rempli d’eau afin de garantir la modération des neutrons émis par la source et une sensibilité moindre à l’environnement extérieur. Les détecteurs sont positionnés autour de la source afin de réaliser des mesures à différentes distances de modération. Les comptages obtenus sont traités par un algorithme itératif dédié aux déconvolution des données, sur la base d’un algorithme itératif de type ML-EM ou MAP-EM. Le candidat travaillera sur les problématiques de mesures de spectre neutrons au sein du laboratoire. Il participera à des campagnes de mesures de sources et travaillera sur les aspects de détection des neutrons, de traitements de données notamment la problématique de discrimination neutron gamma, ainsi que les méthodes de déconvolution de données et de reconstruction de spectre. Une attention particulière sera portée sur l’optimisation de la caractérisation des sources, avec l’intégration de l’information liée aux coïncidences neutron gamma spécifiques aux sources de type XBe.
Étude et modélisation de récepteurs acoustiques à réseaux de Bragg sur fibre optique
Le CEA List travaille depuis plusieurs années sur le développement de solutions de monitoring avancées exploitant des récepteurs acoustiques sur fibres optiques appelés réseaux de Bragg. Ces capteurs optiques présentent un fort potentiel pour la surveillance des structures à la fois par leur capacité d’intégration au sein des matériaux (béton, composite organique, métal) et leur capacité à être déployés en environnement difficile (embarqué, radiatif, haute température).
Un travail de postdoctorat est proposé afin de mener des travaux de modélisation de ces transducteurs à réseaux de Bragg en vue d’affiner la compréhension de leur sensibilité vis-à-vis des ondes élastiques guidées ultrasonores et d’aider au design d'un système de contrôle associé grâce à un placement intelligent des capteurs. In fine, l’objectif est de pouvoir simuler leur réponse au sein du logiciel de Contrôle Non Destructif Civa développé par le CEA List, et plus particulièrement via son module dédié au Structural Health Monitoring (SHM). Un tel travail contribuerait fortement à l’adoption et l’exploitation de cette technologie pour des applicatifs en Structural Health Monitoring.
Mise en œuvre de capteurs permettant le suivi en ligne de la corrosion des aciers inoxydables en milieu acide nitrique chaud et concentré
La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente. Certaines installations de l’usine de la Hague devront d’ailleurs être remplacées très prochainement. Dans ce contexte, il est important pour l’industriel de développer des capteurs, résistants à l’acide nitrique concentré (˜ 2,5 mol/L) et à la température (de l’ambiante à 130 °C), permettant de suivre la corrosion en ligne.
L’objectif de ce travail est de fabriquer un capteur permettant de détecter la corrosion de l’acier.
Les challenges de ce sujet de post-doc sont essentiellement technologiques puisqu’il s’agira de développer ou d’utiliser des matériaux adaptés à des milieux acides nitriques concentrés et chauds.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée.
Dosimètre à base de scintillateur plastique rapide pour la mesure en ligne des faisceaux en radiothérapie FLASH
Les nouvelles modalités de traitement du cancer ont pour but l’amélioration de la dose délivrée à la tumeur tout en épargnant au mieux les tissus sains. Différentes approches sont en cours de développement dont l’optimisation temporelle de la dose délivrée avec l’irradiation à très haut débit de dose (FLASH).
Dans ce cas particulier, des études récentes ont montré que l’irradiation FLASH avec des électrons était aussi efficace que les traitements en faisceaux de photons pour la destruction des tumeurs tout en étant moins nocive pour les tissus sains. Pour ces faisceaux, les doses instantanées sont jusqu’à plusieurs ordres de grandeur supérieures à celles produites par les faisceaux conventionnels. Les dosimètres actifs usuels saturent dans ces conditions d’irradiation à très haut débit de dose par impulsion et, par conséquent, la dosimétrie en ligne du faisceau n’est pas possible.
Nous proposons de développer un dosimètre dédié à la mesure des faisceaux en radiothérapie FLASH, basé sur un scintillateur plastique ultra-rapide couplé à un capteur photomultiplicateur en silicium (SiPM). La nouveauté du projet réside à la fois dans la composition chimique du scintillateur plastique, qui sera choisie pour son temps de réponse et son émission en longueur d’onde pour avoir une réponse adaptée aux caractéristiques impulsionnelles du faisceau, et dans le capteur final, avec la possibilité de coupler le scintillateur plastique à une matrice de SiPM miniaturisée.
Le but final est de pouvoir accéder, avec une méthodologie fiable, à la dosimétrie et à la géométrie en ligne des faisceaux FLASH.
Mesure de nématiques cellulaires actifs par microscopie sans lentille
Au CEA-Leti, nous avons validé une plateforme de vidéo-microscopie sans lentille vidéo en enregistrant des milliers d’heures de cultures cellulaires. Et nous avons développé différents algorithmes pour étudier les fonctions cellulaires majeures, à savoir l’adhésion, la motilité, la division cellulaire et la mort cellulaire.
Le projet de recherche du post-doc est d’étendre l’analyse des ensembles de données produites par la microscopie vidéo sans lentille. Le post-doc assistera notre partenaire dans la conduite des expérimentations et développera les algorithmes nécessaires pour reconstruire les images de la culture cellulaire dans différentes conditions. En particulier, les algorithmes de reconstruction holographique devront être à même de quantifier sur des échantillons cellulaires la différence de chemin optique (c’est-à-dire l’indice de réfraction multiplié par l’épaisseur). Les algorithmes existants permettent de quantifier les cellules isolées. Ils seront développés et évalués pour quantifier la formation de l’empilement cellulaire dans les trois dimensions. Ces algorithmes n’auront aucune capacité de sectionnement en Z comme par exemple la microscopie confocale, seule l’épaisseur du chemin optique sera mesurée
Nous recherchons des personnes ayant obtenu un doctorat en traitement d’images et / ou en deep learning avec des compétences dans le domaine de la microscopie appliquée à la biologie.
Optimisation d’un réseau de magnétomètres à pompage optique pour l’imagerie médicale
Notre laboratoire travaille sur des magnétomètres à pompage optique (OPM) basés sur des atomes métastables d’hélium-4. Notre principale réalisation au cours des dernières années a été la conception et la qualification spatiale des OPM les plus avancés disponibles pour l’exploration spatiale, lancés dans le cadre de la mission Swarm de l’ESA [1].
Avec cette même espèce, nous avons développé des OPM pour l’imagerie médicale du cerveau (MEG) et du cœur (MCG), qui présentent l’avantage de fonctionner à température ambiante. Le développement de ces techniques d’imagerie est une opportunité pour mieux comprendre et diagnostiquer des pathologies telles que l’épilepsie, la maladie d’Alzheimer ou l’arythmie.
Il y a quelques années, nous avons effectué des mesures de validation de principe avec des versions primitives de nos capteurs [2,3]. Après avoir acquis une meilleure compréhension de la physique de nos capteurs [4], nous développons actuellement des réseaux d’OPM et collaborons avec plusieurs équipes cliniques afin de les tester.
Le candidat devra contribuer au développement de réseaux d’OPM. Il s’agit principalement de travaux expérimentaux visant à tester et à améliorer les prototypes actuels de réseaux OPM médicaux : diminuer le bruit intrinsèque du capteur et d’identifier le meilleur moyen de construire des architectures robustes et reproductibles de réseaux d’OPM de plusieurs dizaines ou centaines de capteurs.
Ce travail sera réalisé au sein d’une équipe multidisciplinaire, composée de chercheurs, d’ingénieurs expérimentés, ainsi que de doctorants et post-doctorants, spécialisés dans les domaines de l’optique, des lasers, du magnétisme et de l’électronique. Il s’appuiera également sur des collaborations avec des équipes de recherche médicale.
[1] http://smsc.cnes.fr/SWARM
[2] S. Morales et al., Phys. Med. Biol. (2017).
[3] E. Labyt et al., IEEE Transactions on Medical Imaging (2019)
[4] F. Beato et al. Physical Review A (2018)
Deploiement d’un réseau de magnétomètres à pompage optique dans des environnements cliniques
Notre laboratoire travaille sur des magnétomètres à pompage optique (OPM) basés sur des atomes métastables d’hélium-4. Notre principale réalisation au cours des dernières années a été la conception et la qualification spatiale des OPM les plus avancés disponibles pour l’exploration spatiale, lancés dans le cadre de la mission Swarm de l’ESA [1].
Avec cette même espèce, nous avons développé des OPM pour l’imagerie médicale du cerveau (MEG) et du cœur (MCG), qui présentent l’avantage de fonctionner à température ambiante. Le développement de ces techniques d’imagerie est une opportunité pour mieux comprendre et diagnostiquer des pathologies telles que l’épilepsie, la maladie d’Alzheimer ou l’arythmie.
Nous avons effectué des mesures de validation de principe avec des versions primitives de nos capteurs [2,3]. Après avoir acquis une meilleure compréhension de leur physique [4], nous développons actuellement des réseaux d’OPM et collaborons avec plusieurs équipes cliniques.
Ce poste a pour objectif de contribuer au développement et au déploiement d’un réseau d’OPM dans les environnements cliniques, où ils vont être testés par plusieurs de nos équipes de recherche médicale partenaires en neurologie et en cardiologie. Le candidat doit pouvoir déployer et utiliser les capteurs dans ces environnements, résoudre les problèmes pratiques et apporter des informations sur les améliorations nécessaires. Il participera également à la mise en œuvre de certaines de ces améliorations et à leurs tests en laboratoire.
Ce travail sera réalisé au sein d’une équipe multidisciplinaire, composée de chercheurs spécialisés dans les domaines de l’optique, des lasers, du magnétisme et de l’électronique. Il s’appuiera également sur des collaborations avec des équipes de recherche médicale.
[1] http://smsc.cnes.fr/SWARM
[2] S. Morales et al., Phys. Med. B
[3] E. Labyt et al., IEEE Transactions on Medical Imaging (2019)
[4] F. Beato et al. Physical Review A (2018)
Développement de l’analyse d’isotopes de faible abondance par spectrométrie de masse. Application au 144Ce et au 106Ru.
L’objectif de ce projet consiste à mettre au point les méthodes d’analyse de haute précision du 144Ce et 106Ru par spectrométrie de masse afin de qualifier les calculs neutroniques associés dans des échantillons irradiés. Ces deux isotopes sont présents en faible abondance dans les échantillons étudiés et présentent des interférences isobariques significatives, principalement avec le 144Nd et le 106Pd, respectivement. Pour mener à bien ce projet, le(a) candidat(e) réalisera les développements analytiques en laboratoire conventionnel sur des échantillons inactifs, puis transposera ces développements en zone contrôlée pour l’analyse d’échantillons réels afin de valider la procédure. Dans le cas du 144Ce, la mise en œuvre d’un couplage entre la chromatographie liquide haute performance (HPLC) et l’ICPMS-MC, associé à la technique de la dilution isotopique pour la détermination précise des teneurs atomiques, est envisagée. Concernant le 106Ru, la détermination de la concentration en 101Ru sera réalisée dans un premier temps par ICPMS-Q et le rapport 101Ru/106Ru sera déterminé par couplage HPLC/ICPMS-Q ou HPLC/ICPMS-MC afin de lever l’interférence 106Pd/106Ru.
Réalisation par laser femtoseconde de récepteurs acoustiques à réseaux de Bragg pour la Surveillance Santé des Structures par tomographie acoustique passive
Le sujet de post-doctorat proposé s’inscrit dans le cadre d’un projet transversal initié par le CEA et qui consiste à développer un prototype de système de surveillance en continu d’une structure métallique (une conduite par exemple) par chapelets de récepteurs acoustiques à réseaux de Bragg fibrés et par imagerie passive (ou tomographie passive). Il vise à démontrer la pertinence du concept de SHM (Structural Health Monitoring) pour le nucléaire à l’aide de capteurs opérant en continu et en environnement extrême. Ce projet s’appuie sur deux développements récents : les réseaux de Bragg de nouvelle génération développés pour environnement sévère et les algorithmes d’imagerie de défauts à partir de l’analyse du bruit ambiant. Une démonstration de principe de la mesure passive d’ondes élastiques par réseaux de Bragg a été effectuée au CEA en 2015, ce qui constitue une première mondiale, brevetée. Le projet vise plus particulièrement à réaliser un démonstrateur et à équiper une canalisation sur boucle d’essai. Il fournira des données d’entrée relatives à la capacité d’un fluide en mouvement à générer des ondes élastiques analysables en tomographie passive.