Développement de résonateurs piézoélectriques adaptés à la conversion de puissance

Le CEA-Leti travail à l’amélioration des technologies de conversion d'énergie depuis plus de 10 ans. Notre recherche se concentre sur la conception de convertisseurs plus efficaces et compacts en exploitant les transistors à base de GaN, établissant ainsi de nouvelles normes en termes de commutations ultrarapides et de réduction des pertes d'énergie.
Dans le cadre de cette quête constante d'innovation, nous explorons des voies novatrices, notamment l'intégration de résonateurs mécaniques piézoélectriques. Ces dispositifs émergents, capables de stocker l'énergie sous forme de déformations mécaniques, offrent une perspective prometteuse pour une densité d'énergie accrue, en particulier à des fréquences élevées (>1 MHz). Cependant, la présence de modes de résonance parasites impacte l'efficacité globale du système. Nous avons donc besoin d’une personne ayant des compétences en mécanique, notamment vibratoire pour améliorer ces résonateurs micromécaniques fabriqués en salle blanche.
Vous serez accueilli à Grenoble au sein d’une équipe d'ingénieurs, chercheurs et étudiants (doctorants), dédiée à l’innovation pour l’énergie, qui mixte les compétences de la microélectronique et des systèmes de puissance de deux instituts du CEA, le LETI et le LITEN, au plus près des besoins de l'industrie (http://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/electronique-puissance.aspx).
Si vous êtes un esprit scientifique avide de relever des défis complexes, passionné par la recherche de solutions novatrices et prêt à contribuer à la pointe de la technologie, ce poste/projet représente une opportunité unique. Joignez-vous à notre équipe pour nous aider à repousser les frontières de la conversion d'énergie.

Références : http://scholar.google.fr/citations?hl=fr&user=s3xrrcgAAAAJ&view_op=list_works&sortby=pubdate

Micro-usinage de thermoplastiques pour la fabrication de microsystèmes analytiques

Les techniques de micro-fabrication et notamment le micro-usinage permettent le prototypage rapide (quelques jours) de microsystèmes, au plus proche de l’application. Le polyméthacrylate de méthyle (PMMA - Nom commercial Plexiglas) est un matériau communément utilisé pour la fabrication de microsystèmes mais dont la résistance chimique aux acides et aux solvants est limitée.
L’objectif de ce post-doctorat est d’étudier la possibilité de l’usinage de matériaux alternatifs au PMMA et d’optimiser les paramètres de fabrication associés. Le post-doctorat débutera par la sélection des matériaux en fonction des applications visées (propriétés optiques, physiques et chimiques). Les matériaux seront choisis parmi la famille des thermoplastiques (PC, POM, PS, PEHD, PEEK, PVC, PP, PTFE, ULTEM, etc).
L’optimisation de l’étape de micro-usinage sera réalisée en faisant varier de nombreux paramètres comme la vitesse de rotation de l’outil, les vitesses d’avances, la profondeur de passe, etc. Les surfaces et canaux obtenus seront caractérisés par profilométrie optique ou mécanique, microscopie optique et/ou microscopie électronique à balayage.

Comportement sismique d’un pont roulant

Les ponts roulants font partie des équipements d’installations industrielles pour lesquels il convient de porter une attention particulière. Ils sont en effet généralement situés en partie haute des ouvrages de génie civil et donc potentiellement soumis à des niveaux importants d’accélération en cas de séisme du fait de l’amplification induite par la structure porteuse. En conséquence, ils sont potentiellement sujets à des efforts significatifs et peuvent être la source d’efforts importants sur la structure de supportage. L’enjeu pour la sûreté est de se prémunir face au risque d’agression avec des équipements sensibles, en cas d’instabilité des éléments constitutifs du pont ou de la structure de supportage. Cette étude s’inscrit dans la continuité de deux précédentes campagnes d’essais qui ont été menées sur la table vibrante Azalée du laboratoire EMSI sur une maquette de pont roulant. Elle vise à fournir des modèles numériques validés de ponts roulants. Deux axes de recherche sont envisagés. Le premier axe consiste à compléter les campagnes d’essais « historiques » par des essais statiques sur la maquette pour justifier le recalage des modèles numériques. Le second axe consiste à exploiter, par confrontation essais/calculs, l’ensemble des essais qui ont été réalisés dans le cadre d’une campagne d’essais précédente et qui ont été réalisés à des fins d’analyse statistique.

Simulation HPC des propriétés mécaniques des électrodes dans les batteries Li-ion

Li-ion batteries are complex multi-physics systems in which chemical reactions, transport phenomena, and mechanical deformation are strongly coupled. The battery electrodes are composed of micrometric granular materials (the microstructure) where the lithium can insert and disinsert, a process that creates internal mechanical stress and strain in the materials and subsequent volumic changes. While it is currently observed that the coupling between electrochemical reactions and mechanical deformation at the microstructure level strongly impacts the battery performances, lifespan and safety, the origin of this impact is poorly understood. The global objective of this position is to better understand the coupling between mechanical deformations of the microstructure and the local conditions of lithium transport in the electrode. The study should lead to practical applications such as recommendation on the electrode design to increase life capability of Li-ion batteries.

Electrification directe de réacteurs innovants pour la réaction inverse du gaz à l'eau (RWGS)

Des technologies telles que l'électrification directe et l'utilisation d'hydrogène propre peuvent jouer un rôle dans la défossilisation du secteur de l'énergie et des industries chimiques. Cependant, pour certains domaines spécifiques, comme le transport maritime ou aérien ou la production d'intermédiaires chimiques à base de carbone, il sera nécessaire de remplacer les molécules fossiles par des molécules renouvelables ayant des propriétés/fonctionnalités proches. La réaction inverse du gaz à l'eau (RWGS), consistant en une hydrogénation catalytique d'une molécule de CO2 très stable en un gaz de synthèse riche en CO plus courant, est une étape clé dans le but de retrofitter diverses infrastructures déjà existantes de nos jours. En effet, ce gaz de synthèse est utilisé dans l'industrie chimique depuis environ un siècle pour synthétiser des produits chimiques et des carburants.
Néanmoins, la RWGS étant une réaction endothermique équilibrée favorisée à haute température, la gestion thermique de la réaction reste un verrou clé, particulièrement l'apport de chaleur au réacteur, qui dans le contexte doit être efficace et provenir d'une source décarbonée.

Modélisation de l’interaction laser-matière pour la simulation des impacts hypervéloces

Les impacts hypervéloces (IHV) constituent un enjeu important pour diverses applications aérospatiales, géophysique ou de protection de grandes installations laser telles que le Laser MégaJoule. Dans ces applications, les vitesses d’impact peuvent aller de quelques km/s à quelques dizaines de km/s. En-dessous de 10 km/s, les canons à gaz ou à poudre permettent de lancer des projectiles à des vitesses représentatives. Pour les vitesses les plus élevées (10 à 50 km/s), l’utilisation de chocs créés par laser est une alternative intéressante.
Toutefois, l'analogie entre IHV et chocs laser repose sur une bonne modélisation des mécanismes d’interaction laser matière, et notamment des effets 2D qui affectent le champ de pression à la surface de la cible.
L'objectif de ce stage postdoctoral est d'étudier l’interaction laser matière avec les outils numériques développés au CEA, notamment le code 1D Esther et le code 2D/3D Troll. Les simulations seront validées par comparaison à des données expérimentales et serviront ensuite à mener des études paramétriques sur les profils spatial et temporel du faisceau laser.

Effets des tremblements de terre sur les installations souterraines

Le Centre industriel de stockage géologique (Cigéo) est un projet de centre de stockage géologique profond de déchets radioactifs à construire en France. Ces déchets seront placés dans des colis scellés dans des tunnels conçus à 500 mètres de profondeur. Les scellements sont constitués d'un mélange de bentonite et de sable qui présente une forte capacité de gonflement et une faible perméabilité à l'eau. Dans le cadre de la démonstration de la sûreté à long terme du dépôt, il doit être démontré que les structures de scellement peuvent remplir leurs fonctions sous chargements sismiques pendant toute leur durée de vie. Afin de garantir ce futur dépôt de déchets nucléaires, le CEA et l'Andra collaborent pour travailler sur les potentiels défis scientifiques et techniques.
La réponse des scellements souterrains aux séismes est complexe en raison de l'évolution spatiale et temporelle des propriétés hydromécaniques des milieux environnants et de la structure elle-même. Une modélisation précise du comportement nécessite donc un code numérique multiphysique couplé pour modéliser efficacement les réponses sismiques de ces structures souterraines pendant leur durée de vie estimée à 100 000 ans.
La recherche proposera donc une évaluation des performances de la modélisation numérique séquentielle et parallèle par éléments finis pour l'analyse sismique des installations souterraines profondes. Ensuite, elle effectuera un échantillonnage de données synthétiques pour tenir compte des incertitudes liées aux matériaux et, sur la base des résultats obtenus lors de l'évaluation précédente, elle effectuera une analyse de sensibilité en utilisant une méthode FEM ou un processus de métamodélisation. Enfin, les résultats et les connaissances acquises dans le cadre de ce projet seront traités et interprétés afin de fournir des réponses aux besoins industriels.

Méthodes robustes de pilotage indirect du chargement pour la simulation de structures en béton armé

Les algorithmes de pilotage indirect (« path-following ») sont généralement employées pour décrire des réponses structurales instables caractérisées par des « snap-backs » et/ou des « snap-troughs ». Dans ces formulations, l’évolution des actions extérieures (efforts/déplacements) est calculée pendant la simulation pour satisfaire un critère de pilotage donné. Adapter le chargement externe pendant le calcul est utile pour obtenir la solution du problème, mais également pour réduire le nombre d’itérations à convergence. Ce second aspect est d’une importance primordiale, notamment pour les calculs à grande échelle (c.-à-d., à l’échelle de la structure). Différentes formulations « path-following » ont été proposées dans la littérature. Malheureusement, un critère objectif pour choisir une formulation plutôt qu’une autre pour la simulation de la réponse de structures en béton armé (BA) (en présence de mécanismes dissipatifs différents et complexes) n’est pas encore disponible. Le travail proposé portera sur la formulation d’algorithmes de pilotage indirect du chargement adaptés pour simuler des structures BA.

Modélisation multiphysique d'un four de frittage expérimental

Dans le cadre du développement et de l’amélioration des performances des vecteurs de production d’énergie bas carbone, le CEA dispose d’une plateforme logicielle permettant de modéliser le comportement du combustible nucléaire de sa fabrication jusqu’à son utilisation en réacteur. Le frittage, étape-clé dans la fabrication, est le procédé de traitement thermique utilisé pour consolider et densifier le combustible nucléaire afin de former la solution solide U1-yPuyO2-x. Le cycle de frittage comporte généralement une montée en température avec une rampe linéaire, un plateau à température constante et un refroidissement contrôlé, avec, éventuellement une adaptation continue du potentiel d’oxygène afin d’obtenir le rapport oxygène sur métal visé. Une première modélisation d’un four de frittage industriel a été réalisée en utilisant la suite logicielle OpenFOAM et la librairie C++ éléments-finis DIFFPACK. Une seconde étape vise la validation des modèles utilisés dans la simulation de ce four industriel sur la base d’une approche à effets séparés et la modélisation d’un four de frittage de laboratoire. Ce post doctorat sera réalisé à Cadarache au sein du laboratoire de modélisation multi-échelle (LM2C) du département d’études des combustibles, en étroite collaboration avec les équipes d’expérimentateurs du Laboratoire de chimie du Solide et d’Elaboration des Matériaux d’actinides (LSEM) de Marcoule qui développent et exploitent le four expérimental. La collaboration portera sur les données d’entrée de la modélisation (la géométrie du four, les conditions de température et d’atmosphère) et les mesures à comparer avec les données de simulations. Le post-doctorant évoluera dans un environnement stimulant, au sein d’un laboratoire dynamique où travaillent déjà une quinzaine de doctorants et post-doctorants, en contact avec des experts en modélisation de la physique du combustible.
Le travail sera valorisé par des présentations en conférences et la publication d’articles.

Expérimentation et simulation numérique de l’emballement thermique des batteries au Lithium

Dans le contexte actuel de transition énergétique, les batteries au lithium constituent aujourd’hui une technologie incontournable pour répondre au fort enjeu du stockage de l’énergie électrique. Cependant, des sollicitations sévères de batteries Li peuvent conduire à un phénomène d’emballement thermique, pouvant aller jusqu’à un départ de feu voire une combustion explosive de la cellule ou de la totalité du pack batterie. Si ce phénomène est bien connu de la communauté scientifique, la R&D liée à la problématique de la sécurité des batteries est encore naissante et doit être consolidée. L’objectif global de ce post-doctorat consiste à développer une stratégie de modélisation et de simulation numérique du phénomène d’emballement thermique des batteries au Lithium soumises à des sollicitations sévères, dans le but de mieux comprendre le phénomène, estimer le risque de propagation thermique du fait de la combustion des gaz, ou encore étudier les conséquences mécaniques de l’emballement (interaction fluide structure). Cette stratégie s’appuiera sur des campagnes d’essais expérimentaux réalisées dans le cadre du postdoc, et sur les outils numériques développés au CEA, dont EUROPLEXUS et Cast3M. Les travaux s’organiseront en 3 volets : Compréhension et modélisation des phénomènes mis en jeu sur la base d’essais (tube à choc, tests abusifs), Développement d’un modèle numérique représentatif des phénomènes identifiés, Modélisation intégrant l’interaction fluide/structure (déformation de l’enveloppe sous l’effet de la montée en pression).

Top