Etude du transfert d’aérosols au travers de matériaux dégradés
Pour certaines familles de colis de déchets radioactifs, des liants hydrauliques sont utilisés pour établir une barrière confinante entre le cœur des colis de déchets et l’environnement. Les études de sûreté étudient des scénarios accidentels extrêmes pour cette phase (chutes, incendies …) qui peuvent conduire à une altération de la barrière confinante sous forme de fissurations. Il est alors important d’étudier la capacité de rétention de ces fissures vis-à-vis des particules radioactives.
Des études expérimentales ont été initiées avec la thèse d’A. Boccheciampe qui a étudié le cortège de particule (40µm) dans des fissures modèles artificielles (créés à l’imprimante 3D) par mesures microtomographie-3D.
L’objectif post-doctoral est de poursuivre cette thématique avec une approche identique à celles développées sur les études d’efficacité de filtres, afin d’investiguer les particules de diamètre plus faible, entre 0,05 et 5 µm. Les études quantitatives seront ainsi portées sur les flux amont et aval de particules de part et d’autre d’éprouvettes fissurées/dégradées, avec générateur d’aérosol, compteur granulomètre optique et analyseur U-SMPS. Des travaux de modélisation devront être entrepris.
Dimensionnement et optimisation du pilotage d’une chaine de production hydrogène couplée à un parc éolien offshore
Le couplage entre les filières EMR (Energies Marines Renouvelables) et hydrogène fait apparaître des atouts potentiels importants à long terme. Le projet MHyWind propose d’évaluer le potentiel énergétique et économique d’une chaine de production hydrogène intégrée à une sous-station d’un parc éolien offshore. L’hydrogène produit et stocké localement sera distribué par bateau pour des usages portuaires, en remplacement d’énergies fossiles. Pour cela, il sera mise en place une simulation qui intègrera toute la chaine énergétique du parc éolien vers les usages portuaires de l’hydrogène. Elle permettra d’évaluer différentes configurations et dimensionnements en fonction des usages locaux, leviers de valorisation, et modes de pilotage et fonctionnement du système. Les critères seront le productible (kg d’H2 produits / consommés) et les coûts de la chaine complète (CAPEX et OPEX). Dans le cadre du post_doctorat, l’objectif sera la mise en place de l’outil sur ce cadre applicatif pleinement intégré au projet en partenariat avec les équipes des laboratoires concernés.
Procédé DEM’N’MELT : Optimisation des conditions de fonctionnement par modélisation
Dans le cadre du projet PROVIDENCE (Plan Relance, France), le procédé DEM'N'MELT a été développé dans le but de proposer et de commercialiser une solution de traitement et de conditionnement de déchets de haute et moyenne activité aux opérateurs de sites en démantèlement ou en remédiation, en France et à l’étranger. Dans ce cadre, des études d'optimisation de fonctionnement du procédé ont été entreprises.
Le candidat devra prendre en main les logiciels utilisés (Fluent, Workbench, SpaceClaim, Meshing), pour s’approprier les modèles existants. Les modèles devront évoluer pour :
o prendre en compte des points de mesure supplémentaires pour calibrer le modèle
o étudier la sensibilité du système aux propriétés physiques du verre
o optimiser la conduite du four et gérer la capacité d’alimentation en fonction du niveau de remplissage
o ajouter une agitation du bain de verre.
Le candidat pourra d’appuyer sur les compétences du Laboratoire LDPV, à la fois expérimentalement et en modélisation.
Modélisation et évaluation de la e-raffinerie CO2 du futur
Dans le contexte de l'atteinte des objectifs de neutralité carbone en 2050, le CEA a porté une initiative de projet en 2021 qui consiste à évaluer la pertinence du couplage entre un système électronucléaire et un dispositif de capture directe du carbone atmosphérique au travers d’une valorisation de la chaleur fatale du système.
Intégré(e) dans une équipe d'une vingtaine d'experts (évaluation des systèmes énergétiques, ingénierie technico-économique, modélisation de systèmes énergétiques, optimisation, programmation informatique), le candidat participera à un projet de recherche concernant la modélisation et l’évaluation d’une raffinerie du CO2 dédiée à la production de Jet Fuel alimentée par un réacteur nucléaire et couplée avec un procédé de capture de CO2 atmosphérique.
Modèle de rupture d'agglomérat et homogénéisation par simulations DEM : Calibration avec des micro-compressions tomographiques dans la ligne de faisceau de rayons X Soleil
Le processus de fabrication de la céramique de référence comprend trois étapes principales : le broyage, le pressage et le frittage. Le compactage des granulés pendant le pressage repose sur trois étapes principales de densification : le réarrangements par déplacement, le compactage par déformation et l'agglomération des fractures par compression. Ce projet de recherche vise à explorer l'influence de l'étape de pressage sur le comportement de la microstructure pendant le processus de frittage. L'étude porte sur une poudre composée d'agglomérats dont la microstructure est basée sur un mélange homogène de TiO2-Y2O3, TiO2 et Y2O3 sont respectivement utilisés comme substituants pour UO2 pour PuO2. Ces agglomérats cassable sont constitués de particules élémentaires incassables, synthétisés par granulation cryogénique (CGSP) [1].
Des études récentes menées sur la ligne Anatomix du synchrotron Soleil [2] ont validé les résultats des micro-compressions tomographiques, en accord avec la théorie de Kendall (Fig. 1). Les expériences comprenaient des essais de micro-compression cyclique unidirectionnelle sur des agglomérats soumis à un simple cycle de charge et de décharge jusqu'à la rupture.
Les post-traitements tomographiques ont permis de mieux décrire la porosité, et d'appréhender l'initiation et la propagation des fissures. Plusieurs études de simulation DEM ont également été utilisées pour explorer (modéliser ?) le comportement des agglomérats sous chargement dynamique ou quasi-statique avec et sans rupture, sans toutefois calibrer complètement le modèle de rupture [3], [4], [5].
Application de la méthode Hybrid-High-Order (HHO) pour le traitement des effets non locaux en plasticité cristalline via une approche micromorphe
La description du comportement des matériaux à l’échelle cristalline est l’objet de nombreux travaux universitaires et présente un intérêt croissant dans les études de R&D à vocation industrielle. Cette description se fait classiquement à l’aide de lois de comportement décrivant l’évolution locale de l’état microstructural du matériau : déformation (visco-)plastique, densité de dislocations, etc. Le principal moteur de cette évolution est la cission résolue, projection de la contrainte locale sur chaque système de glissement du cristal.
Le formalisme de ces lois de comportement locales est aujourd’hui bien établi, que l’on considère des transformations infinitésimales ou des transformations finies, et bénéficie d’un support particulier au sein du générateur de code MFront. L’utilisation de MFront permet le partage des lois entre les solveurs du CEA (Manta, Cast3M, Europlexus, AMITEX_FFTP) et EDF (code_aster, Europlexus).
L’objectif du post-doctorat est de mettre en place une stratégie numérique robuste, permettant de résoudre de manière fiable des problèmes de structure utilisant des lois de plasticité cristalline non locales et garantissant la transférabilité des lois entre les codes du CEA et d’EDF.
Développement et caractérisation des récepteurs CPV (concentration photovoltaïque) pour des modules CPV à haut rendement
La CPV (concentration photovoltaïque) est une technologie très prometteuse pour la génération d’éléctricité à grande échelle. Elle profite des éléments optiques à faible coût, tels que miroirs ou lentilles, pour capturer la lumière du soleil et pour la concentrer dans des cellules de petite taille. Cette technologie, qui est déjà dans un stade industriel, est basée sur des cellules solaires multi-jonction (MJSC), qui ont des rendements jusqu’à 45%.
Le candidat travaillera dans des nouvelles architectures de récepteurs conçus à partir des cellules CPV à haut rendement qui seront ultérieurement intégrées dans des modules CPV de nouvelle génération. L’ingénieur(e) de recherche devra également apprendre à caractériser ces systèmes, pour lequel il / elle va utiliser les outils disponibles au Labo CPV à l’INES (CEA). D’autres nouvelles techniques de caractérisation peuvent être aussi nécessaires.
Le candidat doit être physicien ou ingénieur avec une spécialisation dans le domaine de la physique d’état solide, de l’électronique, de l’ingénierie électrique, de la mécatronique ou similaire. Il / elle doit être docteur, de préférence dans le domaine du photovoltaïque et particulièrement en CPV. De bonnes compétences linguistiques et l’expérience de laboratoire sont nécessaires.
Méthodes robustes de pilotage indirect du chargement pour la simulation de structures en béton armé
Les algorithmes de pilotage indirect (« path-following ») sont généralement employées pour décrire des réponses structurales instables caractérisées par des « snap-backs » et/ou des « snap-troughs ». Dans ces formulations, l’évolution des actions extérieures (efforts/déplacements) est calculée pendant la simulation pour satisfaire un critère de pilotage donné. Adapter le chargement externe pendant le calcul est utile pour obtenir la solution du problème, mais également pour réduire le nombre d’itérations à convergence. Ce second aspect est d’une importance primordiale, notamment pour les calculs à grande échelle (c.-à-d., à l’échelle de la structure). Différentes formulations « path-following » ont été proposées dans la littérature. Malheureusement, un critère objectif pour choisir une formulation plutôt qu’une autre pour la simulation de la réponse de structures en béton armé (BA) (en présence de mécanismes dissipatifs différents et complexes) n’est pas encore disponible. Le travail proposé portera sur la formulation d’algorithmes de pilotage indirect du chargement adaptés pour simuler des structures BA.
Production d’hydrogène et d’ammoniac à partir d’un champ éolien offshore
Depuis 2013, le CEA Tech met progressivement en place des Plates-formes régionales de transfert technologique (PRTT), avec l’appui des collectivités territoriales pour répondre spécifiquement aux besoins d’innovation du tissu industriel régional, avec un rôle complémentaire de celui des acteurs scientifiques et économiques en place. Ce projet s’inscrit dans la thématique d’innovation «marinisation des systèmes énergétiques » développé au sein de la PRTT des Pays de la Loire (DPLL) qui a notamment pour but de contribuer à définir des architectures de conversion énergétiques innovantes prenant en compte les contraintes environnementales et d’usages en milieu maritime. Ces travaux s’appuient sur un fort background du LITEN (Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux) en outils de modélisation et d’optimisation de chaines énergétiques multi-physiques et sur une expertise croissante de la PRTT sur l’exploitation et l’adaptation de ces outils aux contraintes maritimes.
Développement d'un dispositif expérimental pour l'étude de l'endommagement solide des métaux
Le(la) candidat(e) retenu(e) aura pour objectif de participer à la mise au point d'un dispositif expérimental permettant d'étudier le développement de l'endommagement dans une structure métallique (anneau) en expansion dynamique. Actuellement, un travail de thèse mené au CEA/Gramat [1] a conduit au développement d'un dispositif expérimental permettant d'étudier l'expansion dynamique d'un anneau métallique et d'en observer sa fragmentation. La configuration est, pour le moment, limitée à une gamme de vitesses et de géométries qu'il convient d'étendre. La première partie du travail du post-doctorat, s'appuyant sur une expertise à la fois expérimentale et numérique, vise à adapter le dispositif expérimental actuel afin d'atteindre des configurations pertinentes au regard des besoins liés à la caractérisation du modèle d'endommagement. Une attention toute particulière sera aussi portée sur la spécification et la mise en oeuvre des diagnostics expérimentaux in situ et post-mortem. Dans un second temps, le(la) candidat(e) concevra les géométries de cibles et mènera les expériences associées permettant la validation du modèle d'endommagement. Les résultats obtenus devront permettre au CEA d’évaluer et d'enrichir sa capacité de compréhension et de modélisation des phénomènes d'endommagement et de fragmentation via notamment la simulation numérique.
[1] F. Gant et al., Plate-impact-driven ring expansion test (PIDRET) for dynamic fragmentation. Proceedings of the 13rd DYMAT Conference, 2021.