Simulation des matériaux par dynamique d’amas

Les alliages utilisés dans les applications nucléaires subissent une irradiation aux neutrons, laquelle introduit un grand nombre de défauts lacunaires et interstitiels. Au cours du temps, ces défauts migrent, se recombinent et s’agglomèrent pour former des amas. Ce phénomène physique affecte les propriétés mécaniques des aciers et conduit à sa fragilisation. Dans ce contexte, il est important de pouvoir simuler l’évolution de la microstructure à l’aide de la méthode de dynamique d’amas. Malheureusement, cette méthode devient inefficace lorsque plusieurs éléments d’alliage doivent être pris en compte. La difficulté provient du nombre trop élevé de variables de simulation à gérer. Le projet a pour objectif d’optimiser l’efficacité du code sur une architecture parallèle distribuée en faisant appel à des fonctions dédiées, vectorielles et matricielles, de la bibliothèque SUNDIALS. Cette librairie est utilisée pour intégrer l’équation différentielle ordinaire décrivant les réactions entre amas. Un autre aspect du travail, plus théorique, consistera à reformuler le problème non-linéaire de recherche de zéros du schéma d’intégration en tirant profit de la réversibilité des réactions chimiques. Cette propriété doit permettre la mise en oeuvre de solveurs directs et itératifs pour matrices creuses, symétriques et définies positives. Un axe de recheche explorera la combinaison des approches directs et itératives, en utilisant une méthode de factorisation multi-frontale de type Cholesky pour préconditionner des itérations de gradient conjugué.

Conception d’alliages à Haute entropie (thermodynamique prédictive, Machine learning) et fabrication rapide par frittage SPS

Le travail proposé vise à utiliser des méthodes de fouille de données (réseaux de neurones artificiels, Random Forest, processus Gaussiens) combinée avec la thermodynamique prédictive (méthode CALPHAD) pour découvrir de nouveaux alliages HEA dans le domaine à 6 éléments Fe-Al-Ni-Co-Mo-Cr. Des méthodes expérimentales de densification rapide (frittage assisté par courants électromagnétiques pulsés (SPS pour Spark Plasma Sintering)) et de dispense automatisée de poudre seront utilisées pour la fabrication rapide des compositions identifiées. Des méthodes de caractérisation semi-automatisées permettront d’alimenter des bases de données avec des mesures rapides de propriétés physiques (densité, taille de grains, dureté). La prédiction de propriétés d’usage pour deux cas d’application (corrosion par des sels fondus et propriétés mécaniques pour application structurale) sera réalisée et les alliages correspondant élaborés pour validation expérimentale.

Contrôle de l’adhésion de composites collés par des techniques ultrasonores non-linéaires

Le CEA-LIST conçoit des méthodes de contrôle non destructives (CND) innovantes dans de nombreux secteurs de l’industrie. De fortes collaborations entre le CEA-LIST et Airbus Group Innovations (AGI) sur la thématique du contrôle non destructif ont conduit à la création d’un laboratoire CEA de CND pour les Applications Aéronautiques (LC2A) au sein des équipes d’Airbus.
Le contrôle des structures composites collées constitue un enjeu majeur pour l’industrie aéronautique. La contamination des surfaces collées, les cycles thermiques ou les sollicitations mécaniques rencontrées par le joint collé peuvent conduire à des propriétés adhésives dégradées auxquels les techniques ultrasonores conventionnelles ne sont pas sensibles. Les méthodes ultrasonores non-linéaires comme par exemple le couplage d’ondes non-colinéaires, la génération d’harmoniques ou l’imagerie non linéaire présentent de fortes potentialités au regard du contrôle de l’adhésion. L’objectif de ce travail postdoctoral consistera à concevoir, mettre au point et évaluer les potentialités de ces techniques pour l’évaluation de l’adhésion des structures composites collées.
Ces travaux qui s’inscrivent dans le cadre d’un programme de recherche européen sur la thématique du collage seront menés au sein du LC2A dans les locaux d’AGI situés à Toulouse. De solides compétences en physique expérimentale, en instrumentation, en méthodes ultrasonores non-linéaires seraient appréciées.

Packaging innovant pour la puissance : application aux composants grand gap SiC

En continuité des travaux de thèse en cours sur l’assemblage 3D de composants de puissance verticaux sur technologie Si, le but de ce post-doc est de développer, à partir de l’expérience acquise, un assemblage similaire sur composants verticaux sur techno SiC. Le travail demandé sera de définir les composants (haute fréquence/haute tension) avec le fournisseur afin de les adapter au mieux à l’intégration verticale (finition Cu, topologie, …), d’adapter le design du frame pour l’assemblage 3D en conséquence, ainsi que de développer la technologie de report adaptée à ce nouveau matériau/substrat. Le candidat prendra également en charge les caractérisations électriques de l’empilement afin de démontrer les avantages de cette intégration 3D sur les composants grand-gap. En complément du sujet, une troisième source de dispositifs de puissance est disponible au laboratoire avec une analyse design approfondie à réaliser afin d’adapter les dispositifs au packaging 3D.

Implant médical actif réalisé en encapsulation hermétique verre

La micro-électronique étend ses champs d’applications via les micro-systèmes comportant des capteurs, des récupérateurs d’énergie, des modules de communication performants etc... Les implants médicaux actifs tels les pace-makers et défibrillateurs cardiaques, les dispenseurs de médicaments, les sondes neuronales etc… sont autant de domaines possibles pour ces modules à haute intégration. Le matériau verre, en alternative au silicium, monte en maturité technologique (interconnexions, amincissement, fonctionnalisation) et présente des caractéristiques ‘clé’ pour le domaine médical : biocompatibilité, herméticité, stabilité, transparence, ainsi qu’un coût réduit.
L’objectif est l’étude de l’encapsulation verre de micro-systèmes, pour des applications implants actifs.

Optimisation d’outils microfluidiques pour la mesure de données cinétiques

La mise au point et la modélisation des procédés chimiques nécessitent l’acquisition de nombreuses données thermodynamiques et cinétiques. Les méthodes conventionnelles de mesure de ces données de base mettent généralement en œuvre des quantités non négligeables de réactifs. En particulier pour les procédés de précipitation, où le caractére stochastique de la nucléation nécessite la réalisation d’un grand nombre d’expériences. Le sujet proposé consiste à poursuivre les travaux déjà réalisés sur la concetpion d’une puce dédiée à la mesure de cinétiques de nucléation rapide. Dans un premier temps, la validité des données obtenues par la technique microfluidique sera évaluée et optimisée sur la base de systèmes chimiques connus et non-radioactifs. L’outil microfluidique sera ensuite mis à profit pour étudier la sensibilité de ces réactions à différents paramètres opératoires (sursaturation, impuretés, additifs, etc.) avant d’envisager sa transposition aux procédés de l’industrie nucléaire, tels que la décontamination d’effluents radioactifs. Enfin, un nouveau design de puce pourra être proposé pour la mesure de cinétique d’extraction liquide-liquide, en lien avec le développement de nouveaux procédés hydrométallurgiques.

Modélisation multi-Echelle de la Ségrégation Induite par iRradiation

L’irradiation crée dans les matériaux un excès de lacunes et d‘auto-interstitiels, qui s’éliminent en se recombinant ou en s’annihilant sur les défauts étendus (surfaces, joints de grains, dislocations). Elle maintient ainsi des flux de défauts ponctuels vers ces puits. Dans le cas d’un transport préférentiel d’un des composants d’un alliage, une variation de la composition chimique apparaît à proximité des puits: c’est la Ségrégation Induite sous Irradiation (SII). Sa modélisation nécessite une bonne description des propriétés de l’alliage: ses forces motrices (dérivées de la thermodynamique) et ses coefficients cinétiques (constantes d’Onsager). L’objectif de ce projet est de combiner (i) des modèles atomiques (simulations Monte Carlo et champ moyen autocohérent), ajustés sur des calculs ab initio et qui permettent d’accéder aux coefficients d’Onsager et aux forces motrices et (ii) la modélisation de type champs de phases qui permettra de décrire la cinétique sous irradiation à des échelles de temps et d’espace supérieures. On appliquera la méthode aux systèmes FeCu et FeCr, déjà modélisés à l’échelle atomique. La SII sera modélisée à proximité d’un joint de grains, puis à proximité d’une boucle de dislocations. On s’intéressera plus particulièrement à l’influence de la contrainte sur le phénomène.

Substrats Germanium sur isolant (GeOI) pour la photonique : amélioration de la qualité cristalline et mise sous contrainte

Depuis environ 2010, on assiste à une course au laser Ge, à laquelle participent notamment le MIT, l’université de Stanford, l’université de Paris Sud et le Leti. En parallèle, le laboratoire des professeurs Takagi et Takenaka à l’université de Tokyo est à la pointe de développements de composants photoniques à base de Ge pour le proche infra-rouge.
Le post-doc consistera à développer des substrats GeOI à partir de substrat Ge massif avec mise en traction du film. Ces développements seront réalisés à partir des procédés Smart Cut / collage amincissement existants, combinés à des étapes permettant de dépasser leurs limites actuelles (e.g. collage type SAB). Les matériaux obtenus seront caractérisés pour déterminer leur état de déformation ainsi que leur endommagement (Raman/XRD) et des substrats seront fournis aux laboratoires applicatifs pour réalisation de composants photoniques.

Eco-innovation de matériaux isolants par IA, pour la conception d'un futur câble à grande longévité, résilient, bio-sourcé et recyclable

Ce sujet s’inscrit dans un projet plus vaste à venir, pour la création, par IA, d’un nouveau câble électrique pour les futures centrales nucléaires, fiable et résilient ayant des capacités d’auto-réparation, notamment vis-à-vis de son vieillissement. L’objectif est de concevoir des câbles dont la durée de vie sera bien plus longue que les câbles existants dans un démarche d’éco-Innovation. Nous nous focalisons sur l’isolant de câble car c’est l’élément le plus critique pour l’application et le plus sensible au vieillissement. La solution actuelle est basée sur l’ajout d’additifs (antirads et antioxydants) dans cet isolant pour limiter les effets de l’irradiation et retarder au maximum son vieillissement. Mais il existe une autre solution qui n’a jamais encore été testée : les matériaux auto-réparant.
Le projet auquel est rattaché le sujet, a pour objectif la conception et la réalisation de plusieurs éprouvettes modèles d’isolant de câble adossé à des protocoles de caractérisation afin de vérifier le gain en terme de fiabilité et de résilience. Les résultats obtenus commenceront à alimenter une base de données de la future IA autour de la plate-forme Expressif, développée au CEA List, qui nous servira à concevoir le futur câble.

Etude des phénomènes physiques entrant en jeu dans le vieillissement des nanofils de silicium utilisées comme jauges de détection piézorésistives pour la réalisation de capteurs MEMS inertiels.

C’est grâce aux récents développements de la microélectronique que des nouvelles générations de capteurs alliant hautes performances, taille réduite et faible coût ont pu voir le jour. Dans ce contexte, le CEA-LETI a proposé un nouveau concept novateur appelé M&NEMS pour la réalisation de capteurs inertiels de type accéléromètres, magnétomètres et gyromètres. Le concept M&Nems combine les technologies MEMS et NEMS de manière à profiter de la grande force d’inertie générée par une masse MEMS et de la forte sensibilité de détection de jauges NEMS piézorésistives. Des démonstrateurs ont d’ores et déjà été réalisés et ont permis de démontrer l’intérêt du concept M&Nems, l’un des principaux challenges qui reste à relever concerne la fiabilité des capteurs reposant sur ce concept et en particulier des nano jauges piézorésistives. Le travail de recherche sera donc essentiellement focalisé sur l’étude des modes de défaillances de ces nano jauges piézorésistives avec identification des phénomènes physiques et mise en place de modèles de défaillance. Pour ce faire, un premier travail préliminaire pourra être axé sur la physique du composant avec une étude de la conduction électrique dans les nano jauges : piézorésistivité, piégeage de charges et relaxation, effet de champ… L’étude pourra se poursuivre ensuite par l’étude des modes de défaillances des nano jauges proprement dites, il s’agira concrètement d’être en mesure de comprendre et modéliser la physique de vieillissement de ces nano jauges. Pour ce faire, il sera possible de s’appuyer sur les connaissances acquises sur la physique de conduction des nano jauges mais aussi de jouer sur les paramètres physiques des nano jauges. Au final, les modèles de vieillissement mis en place devront permettre de proposer et valider des choix technologiques de manière à garantir la durée de vie des nano jauges en fonction des conditions d’utilisation des capteurs.

Top