Double report de films minces piézoélectrique pour l’élaboration de dispositifs RF innovants
Ces travaux visent à étudier et développer un nouveau concept de multireport de films minces piézoélectrique pour des applications RF. Le candidat sera en charge du développement de l’ensemble de la filière de réalisation de ces structures multicouche et des composants RF 3D. Pour cela, il devra maitriser les mécanismes physiques intervenant dans la technologie de transfert de film et concevoir l’architecture complète notamment via la simulation des propriétés RF des filtres attendues. Une fois la structure définie et les principes fondamentaux maîtrisés, le candidat devra alors identifier les développements nécessaires en relation avec les experts technologique du Léti, assurer leur mise en place sur la plateforme technologique de réalisation et prendre en charge la réalisation des étapes les plus critiques.
Le développement de cette filière de réalisation devra ainsi permettre la génération de substrats possédant une qualité et des propriétés compatibles avec le cahier des charges des composants. La fonctionnalité des substrats devra alors être démontrée via la réalisation de composants RF pertinents afin de démontrer l’apport de cette nouvelle solution technologique au niveau des applications visées.
Le candidat devra faire preuve d’autonomie, d’initiative et de rigueur scientifique afin de s’approprier l’ensemble de la technologie de réalisation.
Evolution des couches superficielles résultant des interactions physico-chimiques entre bétons bas pH et argiles : expérimentations et simulations
La conception d’une installation industrielle de stockage de déchets radioactifs en milieu géologique est un enjeu important pris en compte dans la filière énergétique nucléaire française. Dans ce contexte les matériaux cimentaires occupent une place importante (colis, structures).
L’objectif principal de l’étude proposée est de caractériser les altérations des matériaux mis en contact dans le stockage (interface béton-argile), provoquées par les sollicitations chimiques qu’ils s’infligent mutuellement. Au stade actuel, une approche globale a été enclenchée prenant en compte simultanément la chimie du site de stockage et les bétons envisagés pour cette application à base de ciments commerciaux ou de liants innovants (bas pH) formulés spécifiquement. Sur ces matériaux bas pH en particulier, des questions subsistent quant à leurs évolutions minéralogiques et microstructurales dans le temps. Un programme expérimental bien ciblé (essais dédiés, caractérisations microscopiques), complété par des simulations numériques, permettra de consolider les connaissances indispensables en vue d’une utilisation de ces matériaux.
Ce projet fera intervenir à la fois des spécialistes des matériaux cimentaires du CEA, ainsi que des chercheurs du laboratoire Hydrasa de l’Université de Poitiers.
Développement d’un électrolyte solide pour l’optimisation des microbatteries au lithium
De nos jours les besoins en énergie sont de plus en plus importants pour des espaces de plus en plus petits. Les microbatteries au lithium sont l’une des solutions à la miniaturisation des sources d’énergie. Ces microsources d’énergie sont fabriquées par des techniques de dépôt compatibles avec la microélectronique (couches minces, lithographie …) et sont utilisables comme n’importe quel composant, intégrables dans des circuits. Mais la miniaturisation impose d’avoir des matériaux de plus en plus performants afin garder de bonnes propriétés sur des objets de plus en plus petits. L’électrolyte est l’une des trois couches actives d’une batterie au lithium.
L’objectif de ce post-doc est de développer la couche d’électrolyte afin d’optimiser ses performances. Une partie du travaillera portera sur l’optimisation de l’électrolyte utilisé actuellement et une autre partie sur le développement d’un nouveau matériau.
Le travail est expérimental. Le dépôt des couches se fait par dépôt Physique en phase Vapeur (PVD). Il s’agit de réaliser des cibles, des dépôts et de faire la caractérisation physico-chimique et électrique des échantillons. Le travail se fait au sein d’une équipe de caractérisation en collaboration avec les équipes de dépôt.
Le post-doc a lieu au CEA/LITEN/DTNM/LCMS dans le cadre d’un laboratoire commun CEA/ST Microélectronics.
Etude du retrait sélectif d’alliages métalliques pour la siliciuration avancée des transistors CMOS sub-20 nm
Les performances du transistor CMOS dépendant de la réduction de la résistivité des contacts électriques, l’amélioration du procédé de siliciuration auto alignée est un point clé pour atteindre les exigences de l’ITRS relatives aux futurs noeuds technologiques. La réaction entre une fine couche métallique (Ni1-yPty < 10nm) et le substrat de silicium permet de diminuer les résistances d’accès aux zones source et drain du transistor. Déposé par PVD sur toute la plaque, le métal, sous l’effet d’un traitement thermique, réagit préférentiellement avec les zones semiconductrices plutôt que diélectriques. Le métal non réagi est ensuite gravé dans une solution acide sélective au siliciure métallique. Au vu des nouvelles spécifications (couches ultra fines d’alliages à base de Ni, diminution des budgets thermiques menant à des siliciurations partielles, introduction de nouveaux métaux) requises pour les noeuds technologiques avancés (C20nm et C14nm), la capacité à retirer chimiquement les excès de métal non réagi sur les zones diélectriques doit être évaluée. Dans la salle blanche du CEA-LETI, le candidat sera amené à travailler sur des solutions chimiques innovantes pour graver sélectivement différentes couches métalliques (Ni, Pd, NiCo, NiPd). Les premiers tests conduits sur échantillons permettront d’établir les cinétiques d’attaque et la sélectivité globale sur dispositifs. Avec différentes techniques de caractérisation (TXRF, XRR, AFM, SEM, TEM, XRD), l’interaction des résidus métalliques avec le diélectrique et le comportement de la solution de retrait vis à vis des zones siliciuréees (rugosité, résistivité) seront étudiés. Différents semi-conducteurs (Si, SiGe…) et diélectriques (SiO2, SixNy…) seront investigués. Dans un second temps, les procédés de retrait sélectif les plus prometteurs seront implémentés sur un équipement 300 mm avant d’être intégrés et testés morphologiquement et électriquement sur des substrats comportant des architectures critiques.
Développement d’une cellule à Metal Support pour la production d’Hydrogène par Electrolyse à Haute Température
Le développement de Cellules à Métal Support (CMS) pour l’Electrolyse à Haute Température (EHT) constitue une innovation intéressante pour limiter les dégradations en fonctionnement de ces composants. L’augmentation de la durée de vie des cellules contribuera à réduire les coûts de revient et à positionner l’EHT comme une alternative réaliste face aux autres technologies de production d’hydrogène. La maîtrise de l’élaboration des CMS constitue toutefois un verrou important. Dans les procédés actuels, les couches fonctionnelles de la cellule sont constituées de matériaux céramiques qui sont assemblées avec le substrat métallique poreux à haute température (> 1000 °C). Les différences de comportement mécanique de ces matériaux ainsi que les conditions réductrices imposées par le métal conduisent aujourd’hui à des cellules dont les performances sont insuffisantes par rapport au cahier des charges. L’objectif du post-doctorat sera d’acquérir une meilleure connaissance des mécanismes intervenant lors de l’assemblage et de proposer et de tester des solutions technologiques pour fiabiliser l’élaboration de Cellules à Métal Support.
Mise en mouvement de gouttes par effet de gradient d’énergie de surface
La mise en mouvement de gouttes par effet d’électro-mouillage est maintenant étudiée et utilisée dans de nombreux systèmes et applications. Pour être opérante cette technique nécessite d’utiliser un champ électrique. Dans le cadre de cette étude postdoctorale, l’objectif est d’établir une méthode alternative à l’utilisation d’un champ électrique pour assurer la mise en mouvement d’une goutte de liquide. Aussi, l’élaboration de surfaces à gradient d’énergie de surface, réalisées par dépôt de couches minces ou par technique de texturation (ablation laser), est prévue. La principale difficulté technique va résider dans la maîtrise de la réalisation des motifs pour l’obtention de surfaces à énergie de surface différentes. En dehors des techniques dites « classiques » de réalisation de surface à gradient d’énergie de surface, une technique alternative avec utilisation de molécules activables par modification, soit du potentiel hydrogène (pH), soit de la température de paroi sera aussi étudié. Pour toutes les surfaces, un travail sur l’étude du couplage entre le gradient d’énergie de surface et la présence d’un gradient thermique sur la dynamique de déplacement de goutte sera aussi effectué.
Intégration de couches poreuses pour la réalisation de substrats temporaires avancés
Aujourd’hui, la course effrénée à la miniaturisation entraine des schémas d’intégration qui convergent vers des solutions de double report de films minces monocristallins permettant d’assurer une fonctionnalisation des deux faces du film augmentant ainsi la compacité et la performance des systèmes. Une solution disruptive a récemment été développée au sein du CEA-Léti basée sur l’introduction de couche en silicium poreux au cœur des procédés de fabrication des composants [a]. Ce type de technologie laisse présager un intérêt certain pour des applications de type électronique, MEMS ou encore photovoltaïque, et il convient donc désormais de valider cette technologie à plus large échelle et de cerner les mécanismes mis en jeu notamment lors de la rupture dans la couche poreuse.
Le candidat devra appréhender les spécificités des couches poreuses et de l’ensemble des étapes de réalisation nécessaires au report de film minces afin de valider et de mettre en place leur intégration au sein de démonstrateurs spécifiques qui auront été choisis. Une partie importante du travail portera sur une évaluation et une analyse scientifique du comportement des couches poreuses lors de sollicitation chimique, mécanique et/ou thermique par exemple en vue de forcer une reconstruction de surface des films poreux. Un autre axe d’étude portera sur le développement d’une technologie spécifique pour induire la rupture mécanique au sein de la couche poreuse enterrée. Le candidat devra évaluer la faisabilité d’une rupture par ultrasons et en étudier les mécanismes. Une partie importante des développements consistera également à caractériser finement les propriétés des films et des structures élaborées.
[a] A-S.Stragier et al., Journal of The Electrochemical Society, 158 (5) H595-H599 (2011)
Modélisation de la cinétique des amas de défauts interstitiels dans les métaux CC après l’implantation d’hélium.
Les matériaux de structure des réacteurs nucléaires subissent des conditions d’irradiation sévères qui peuvent modifier leurs propriétés mécaniques. Afin de pouvoir suivre la cinétique atomique qui mène à des structures complexes responsables du vieillissement de matériaux, il faut se tourner vers la simulation numérique. Dans le cadre de l’ANR EPIGRAPH nous allons combiner les techniques expérimentales et les calculs numériques pour mieux caractériser la cinétique des défauts interstitiels dans les métaux cubiques centrés. Nous avons récemment proposé une nouvelle structure tridimensionnelle périodique pour les amas d’interstitiels dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Afin de détecter ces amas expérimentalement, une idée est de les faire grandir après implantation d’hélium [2]. Cette démarche sera réalisée dans divers métaux CC dans le cadre du projet ANR EPIGRAPH, en collaboration avec Chimie ParisTech, GEMaC et LPS.
Dans ce projet, la tâche de modélisation comporte deux directions:
- Les calculs ab-initio, effectués par le postdoc, vont apporter les informations atomistiques sur la croissance des défauts d’irradiation.
- Les résultats des calculs ab-initio seront ensuite utilisés pour paramétrer un modèle cinétique basée sur la dynamique d’amas [3]. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts sur de temps longs.
Le travail de modélisation sera réalisé en étroite collaboration avec la partie expérimentale.
[1] M. C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 108 (2012) 025501
[2] S. Moll, T. Jourdan, H. Lefaix-Jeuland, Phys. Rev. Lett. 111 (2013) 015503
[3] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014)
Automatisation du pilotage d’un noyau de calcul éléments finis basé sur une stratégie de décomposition de domaine. Application au contrôle non-destructif par ultrasons.
Un des axes majeurs d’activité du Département Imagerie et Simulation pour le Contrôle (DISC) du CEA LIST est de proposer un ensemble d’outils de simulation et de modélisation pour le contrôle non-destructif (CND) mis à disposition dans la plateforme de calcul CIVA. La majeure partie des outils de modélisation pour le contrôle par ultrasons, proposés par le Laboratoire de Simulation et Modélisation en Acoustique (LSMA), sont basés sur des méthodes dites semi-analytiques. Bien que très efficaces, la précision de ces méthodes est mise à défaut lorsque certains phénomènes critiques (ondes de tête, caustiques) ou des spécificités du matériau (défaut ou hétérogénéités) apparaissant lors du contrôle. Afin de palier à ces limites de validité, une des activités du LSMA est de proposer un couplage entre les méthodes semi-analytiques et des méthodes numériques. Suivant cette stratégie, un logiciel basé sur des éléments finis d’ordre élevé combinés avec une stratégie de décomposition de domaine est développé au sein du laboratoire pour des configurations 3D. L’objectif principal du travail proposé est d’augmenter la complexité des configurations accessibles à cette stratégie au sein de la plateforme CIVA , par exemple la prise en compte de conditions de couplage fluide-structure notamment pour des défauts débouchants en fond de pièce.
Synthèses de nanoparticules pour application photovoltaïque couche mince
Le poste proposé est un contrat postdoctoral de 2 ans au sein du Laboratoire de nano-Chimie et de Sécurité des Nanomatériaux, du Département de Technologies des Nano-Matériaux du LITEN. Il s’inscrit dans le cadre d’un projet qui a pour ambition de développer de nouveaux matériaux absorbeurs pour la réalisation de cellules photovoltaïques couche mince à partir d’élément abondant et par des techniques bas coûts.
La personne recherchée aura préférentiellement une expérience dans la synthèse chimique de nanoparticules par des procédés humides avec une compétence matériaux, ainsi que la formulation en voie liquide et le dépôt de couches minces par les techniques précurseur liquide. Le travail portera sur la synthèse de nanoparticules par différents procédés, leurs caractérisations physicochimiques ainsi que leur mise en œuvre, tout d’abord sous forme d’encre et ensuite sous forme de couches minces déposées par voie liquide. Les conditions de dépôt et de recuit de la couche permettront d’obtenir le matériau absorbeur souhaité seront étudiées. Ce travail s’inscrit dans le cadre d’un projet ANR avec plusieurs partenaires académiques et industriels avec une forte composante appliquée puisque le but final est d’aboutir à la réalisation de cellules photovoltaïques.