Purification de l’hydrogène issu d’un reformeur par un dispositif électrochimique

Ce projet vise à mettre en place un nouvel axe de recherche et développement sur les dispositifs de purification pour les reformeurs pour alimenter les piles à combustible en hydrogène. Ce travail est de première importance pour réaliser des systèmes à base de piles à combustible alimentés par différentes sources d’hydrocarbures. Utilisée en mode « power full » ou « range extender », le reformeur et son système de purification des gaz sont des éléments de la chaîne qu’il convient d’optimiser
L’objectif du projet est de proposer un dispositif électrochimique de purification du gaz issu d’un reformeur dont le principe de base s’apparente à celui d’un électrolyseur PEM. Les gaz issus du reformeur subissent une oxydation électrocatalytique sélective permettant de séparer l’hydrogène des polluants usuels et d’alimenter directement une pile à combustible.
Le projet portera principalement sur la sélection et la caractérisation des performances électrocatalytiques de catalyseurs ainsi que la réalisation de prototypes fonctionnels.
Ces développements permettront d’évaluer la pertinence économique du dispositif vis-à-vis d’autres systèmes et d’identifier les axes de recherche à développer par la suite.

Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée

Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.

Mise en oeuvre de nanomatériaux piézoélectriques pour la réalisation de capteurs et systèmes flexibles grandes surfaces

Le CEA LETI développe des capteurs innovants ultrasouples permettant la mesure de contraintes en exploitant les propriétés piézo-électriques de nanofils de Nitrure de Gallium (GaN) auto organisés. Les étapes de fabrication sont : i) croissance des nanofils, ii) organisation des nanofils, iii) encapsulation, iv) établissement des contacts. Des démonstrateurs ont déjà été réalisés sur de petites surfaces (1,5 cm²) en utilisant la technique du Langmuir Blodgett pour permettre l’organisation des nanofils. Ce projet vise à augmenter la surface des capteurs et à contrôler l’assemblage 1D et 2D des nanofils, en utilisant notamment une technologie au déroulé innovante du CEA LITEN, appelée Boostream®, dont les fonctionnalités sont similaires au LB dans sa configuration de base.
Le but de ce post doctorat est de développer une nouvelle brique technologique pour l’équipement Boostream® afin de permettre une organisation contrôlée des nanofils dans une configuration prédéfinie. Le candidat aura en charge d’optimiser l’assemblage des nanofils,l’obtention du film structuré ainsi que la fabrication, l’intégration et la caractérisation des transducteurs piézoélectriques aux dimensions de 15x15 cm².
Plus généralement, ce post doc donne l’opportunité de développer une connaissance générique pour manipuler des micro ou nanofils ou encore des fibres donnant accès à de nouvelles solutions techniques pour de nombreux domaines applicatifs comme la structuration de surface, la peau électronique, l’énergie…

Dispositif d’analyse in situ par LIBS de milieux hostiles hautes températures

Le projet de recherche proposé vise à mettre au point un dispositif d’analyse in situ par la technique LIBS de milieux liquides en conditions extrêmes comme les matériaux à haute température de fusion ou les métaux liquides hautement volatils utilisés pour le développements de la production d’énergies décarbonnées. Le projet met en œuvre deux équipes du CEA spécialisées dans l’instrumentation LIBS, le développement analytique et les milieux à haute température.
A haute température, les métaux fondus présentent une forte réactivité en surface conduisant à des processus d’oxydation, nitruration... L’analyse non intrusive de cette surface par LIBS conduit à des résultats non représentatifs de la composition du métal fondu. Dans ce projet, un nouveau concept d’analyse intrusive en volume, basé sur un brassage mécanique couplé au dispositif d’analyse par LIBS est préconisé. Ce concept, protégé par un brevet CEA, permet le renouvellement de la surface du métal en fusion en maintenant une meilleure stabilité de la surface à analyser. Le projet aura pour objectif de mettre au point un démonstrateur dédié à l’analyse de tels milieux par LIBS, qui sera validé pour l’analyse d’impuretés dans le silicium liquide (T > 1450 °C) pendant les procédés de purification et de cristallisation pour les applications solaires photovoltaïques. A l’issue du projet, le système pourra être adapté puis testé au sein des équipes de la DEN pour l’analyse in situ de la pureté du sodium liquide, fluide caloporteur des réacteurs nucléaires de génération 4.

Membranes conductrices protoniques à base de réseaux interpénétrés de polymères pour piles à combustible

Ce sujet se place dans le cadre du développement des piles à combustible à membrane échangeuse de protons (PEMFC), et a plus précisément pour objectif d’améliorer leur performance et leur durée pour un fonctionnement au-dessus de 100°C à faible humidité relative.
Les membranes perfluorosulfonées de type Nafion® constituent la référence pour la PEMFC du fait qu’elles présentent à la fois une conductivité protonique élevée à l’état hydraté ainsi qu’une bonne stabilité chimique. Néanmoins, leur conductivité protonique à une humidité relative inférieure à 70% chute, notamment au-dessus de 100°C, en raison d’une densité de groupements conducteurs trop faible. Cette caractéristique constitue une limitation majeure pour leur utilisation dans les conditions de fonctionnement propres au cahier des charges de l’application automobile. Avec ce type de polymère, l’augmentation de la densité de groupe sulfonique se traduit par une diminution de la stabilité mécanique et dimensionnelle des membranes. Or, cette stabilité est déjà faible et pose des problèmes de durée de vie. L’objectif de ce sujet est de réaliser de nouvelles structures de membrane à base de réseaux interpénétrés de polymères permettant de lever l’antagonisme entre conduction protonique et stabilité mécanique. Cette stratégie, récemment brevetée par le CEA (brevet n°08 06890), repose sur l’association de deux réseaux de polymères imbriqués l’un dans l’autre, l’un sulfoné conférant les propriétés de conduction et l’autre fluoré conférant la stabilité chimique et mécanique.
Le post-doctorant fabriquera les membranes et caractérisera leurs propriétés mécaniques, de conduction protonique, de perméabilité aux gaz. Il évaluera également leurs performances et leur durée de vie en pile à combustible.

Développement de procédés de nanoimpression sur substrats souples pour applications optiques et électroniques

Ce sujet a pour objectif de développer des procédés de nanoimpression spécifiques pour divers matériaux et de les appliquer pour la réalisation de divers composants sur film plastique. Plusieurs thématiques seront abordées au travers de différents matériaux, qu’ils constituent le substrat lui-même, ou qu’ils consistent en une couche plus ou moins fine déposée sur un film plastique flexible. Une liste non exhaustive de ces matériaux est présentée ci-après. Ils correspondent à divers applications potentielles. Dans le domaine de l’électronique, des procédés d’impression de matériaux diélectriques seront étudiés. Des substrats particuliers seront également pressés pour la réalisation d’OTFTs. Dans le domaine de l’optique, la structuration de plusieurs polymères conducteurs présentant des propriétés optiques particulières est envisagée pour diverses applications. Certains de ces polymères font partie de la famille des PEDOT utilisés également dans le domaine du photovoltaique. La structuration d’empilements de polymères sera explorée pour la réalisation de structures 3D.
Enfin la possibilité d’imprimer des films de polymères chargés en nanoparticules sera aussi
analysée.

Procédé DEM’N’MELT : Optimisation des conditions de fonctionnement par modélisation

Dans le cadre du projet PROVIDENCE (Plan Relance, France), le procédé DEM'N'MELT a été développé dans le but de proposer et de commercialiser une solution de traitement et de conditionnement de déchets de haute et moyenne activité aux opérateurs de sites en démantèlement ou en remédiation, en France et à l’étranger. Dans ce cadre, des études d'optimisation de fonctionnement du procédé ont été entreprises.
Le candidat devra prendre en main les logiciels utilisés (Fluent, Workbench, SpaceClaim, Meshing), pour s’approprier les modèles existants. Les modèles devront évoluer pour :
o prendre en compte des points de mesure supplémentaires pour calibrer le modèle
o étudier la sensibilité du système aux propriétés physiques du verre
o optimiser la conduite du four et gérer la capacité d’alimentation en fonction du niveau de remplissage
o ajouter une agitation du bain de verre.

Le candidat pourra d’appuyer sur les compétences du Laboratoire LDPV, à la fois expérimentalement et en modélisation.

Modèle de rupture d'agglomérat et homogénéisation par simulations DEM : Calibration avec des micro-compressions tomographiques dans la ligne de faisceau de rayons X Soleil

Le processus de fabrication de la céramique de référence comprend trois étapes principales : le broyage, le pressage et le frittage. Le compactage des granulés pendant le pressage repose sur trois étapes principales de densification : le réarrangements par déplacement, le compactage par déformation et l'agglomération des fractures par compression. Ce projet de recherche vise à explorer l'influence de l'étape de pressage sur le comportement de la microstructure pendant le processus de frittage. L'étude porte sur une poudre composée d'agglomérats dont la microstructure est basée sur un mélange homogène de TiO2-Y2O3, TiO2 et Y2O3 sont respectivement utilisés comme substituants pour UO2 pour PuO2. Ces agglomérats cassable sont constitués de particules élémentaires incassables, synthétisés par granulation cryogénique (CGSP) [1].
Des études récentes menées sur la ligne Anatomix du synchrotron Soleil [2] ont validé les résultats des micro-compressions tomographiques, en accord avec la théorie de Kendall (Fig. 1). Les expériences comprenaient des essais de micro-compression cyclique unidirectionnelle sur des agglomérats soumis à un simple cycle de charge et de décharge jusqu'à la rupture.
Les post-traitements tomographiques ont permis de mieux décrire la porosité, et d'appréhender l'initiation et la propagation des fissures. Plusieurs études de simulation DEM ont également été utilisées pour explorer (modéliser ?) le comportement des agglomérats sous chargement dynamique ou quasi-statique avec et sans rupture, sans toutefois calibrer complètement le modèle de rupture [3], [4], [5].

Détection de traces de stupéfiants dans la salive par électrochimioluminescence sur électrodes diamant

La consommation de stupéfiants devient un problème pour la sécurité routière car 23 % des décès routiers en France interviennent dans un accident impliquant au moins un conducteur testé positif. Ainsi, un objectif de la sécurité Routière en concertation avec les ministères concernés (Ministère des Transports, Ministère de l’Intérieur, Ministère de la Santé et Ministère de l’Economie) est d’améliorer la lutte contre l’insécurité routière liée à la consommation de stupéfiants. Il s’agit en particulier pour cela d’augmenter et de faciliter les contrôles routiers à l’aide d’un appareil portable dédié au contrôle de l’usage de stupéfiants en bord de route, à l’image de ce qui se fait déjà pour les tests d’alcoolémie à l’aide d’un éthylomètre. Un tel appareil n’est pas aujourd’hui disponible commercialement. Les prérequis principaux de cet appareil seront de fournir des résultats de confirmation fiables, immédiats et ayant valeur de preuve pour les tribunaux ainsi qu’un coût d’achat compatible avec le déploiement à grande échelle sur les réseaux routiers français. Dans ce contexte, le sujet d'étude proposé vise à étudier la détection possible de traces de stupéfiants dans la salive à partir de la méthode d'électroluminescence sur électrode diamant dopé bore. Cette méthode est jugée prometteuse pour une telle application car elle permet potentiellement d’atteindre des seuils de détection extrêmement bas et en accord avec les besoins législatifs, offre de multiples possibilités visant à atteindre une grande sélectivité envers les cibles chimiques, avec une grande capacité de miniaturisation d’équipement et un coût de revient d’appareil et de matières premières relativement faible en comparaison aux outils analytiques de type spectromètre de masse, IMS, etc.

Etude de la cinétique de l’effet biocide de films alimentaires à base de nano cellulose – approche safer by design

Ce projet est basé sur l’étude de la cinétique de l’effet biocide d’un film alimentaire à base de nanocellulose. En insérant une particule d’halloysite ayant la forme d’un feuillet replié sur lui-même dans la nanocellulose, nous espérons créer un réservoir de NPs (Ag ou ZnO) à effet biocide à l’intérieur et donc allonger la durée de cet effet dans le temps. Ce projet couvre toutes les étapes depuis la synthèse du film alimentaire, sa nanocaractérisation et jusqu’à l’étude de ses effets toxicologiques sur les bactéries. In fine, le but est de trouver la ou les fonctionnalisations des halloysites prolongeant le plus possible l’effet biocide et de le transposer par la suite à d’autres types de matériaux.

Top