Couches minces piézoélectriques sans plomb pour les MEMS

Dans le cadre du projet ANR TILPAC, vous travaillerez au développement de matériaux piézoélectriques sans plomb pour les applications actionneurs MEMS. Les matériaux déposés en couches minces seront intégrés dans des véhicules de test afin d'évaluer leurs propriétés (électriques, ferroélectriques, piézoélectriques) et de les comparer à celles du matériau de référence, le PZT, en vue d'une intégration dans des dispositifs à l'échelle industrielle. Une attention particulière sera également portée sur les aspects impacts environnementaux.

Conception d'interfaces capteur reconfigurables à la volée basées sur des réseaux d'oscillateurs.

La production de capteurs faible coût et la montée en puissance de la 5G et de la future 6G sont responsables d’une explosion des applications des réseaux de capteurs sans fil. Il est indispensable de concevoir des circuits d’interfaces capteurs ultra-faible consommation afin d réduire l’impact énergétique de ces applications. Une solution vise à mettre l’intelligence artificielle au plus près du capteur afin de réduire les transmissions de données inutiles. Dans ce cadre-là, il y a un fort intérêt à développer des interfaces capteur reconfigurables afin de diminuer les coûts de développement d’une part et surtout de permettre une reconfiguration à la volée dans l’application en fonction de l’environnement afin d’aider à l’adaptation de l’algorithme d’IA embarqué, en fonction du contexte.
Le postdoc contribuera à la conception d’un circuit intégré CMOS intégrant une interface multi-capteurs, totalement reconfigurable en gain, bande passante et implémentant des convertisseurs analogique-numérique et/ou un réseau de neurone reconfigurables à la volée en terme de poids et connectivité. Pour cela le Post Doc s’appuiera sur les travaux du CEA-Leti qui a démontré la faisabilité d’un traitement du signal dans le domaine temporel à partir d’oscillateurs verrouillés par injection. Il travaillera à la fabrication et au test d’un prototype de réseau d’oscillateurs et démontrera les aspects ultra-faible consommation et de reconfigurabilté sur un exemple d’implémentation d’une application audio de reconnaissance de mots clefs ultra-faible consommation. Le poste est ouvert au sein du laboratoire LGECA du CEA-Leti, laboratoire dédié à la conception de circuits intégrés analogiques et mixtes pour les applications capteur.

Dispositifs photoniques IV-IV à déformation pilotable : application à l’émission et la détection de lumière

La déformation de la maille cristalline d’un semi-conducteur est un outil très puissant permettant de contrôler de nombreuses propriétés telles que sa longueur d’onde d’émission, sa mobilité … Un enjeu de premier plan est de pouvoir générer cette déformation dans des gammes importantes (multi%), et de manière réversible et contrôlée. L’amplification locale de la déformation est une technique récente permettant d’accumuler localement dans une constriction micronique, telle qu’un micropont, des quantités significatives de déformation (jusqu’à 4.9% pour Ge [1]). Cette approche a été mise en œuvre dans des architectures de microlasers en GeSn ainsi fortement déformés au sein du laboratoire SiNaPS [2]. Ces structures ne permettent cependant pas aujourd’hui de moduler sur demande la déformation et la longueur d’onde d’émission imposées au sein d’un même composant, celle-ci étant gelée par « design ». L’objectif de ce post doctorat de 18 mois est donc de réaliser des dispositifs photoniques de la famille des MOEMs (microsystèmes opto-électro mécaniques) permettant de combiner l’amplification locale de la déformation dans le semi-conducteur, à une fonction d’actionnement via un stimulus externe, pour aller vers 1-une microsource laser accordable large bande en longueur d’onde et 2-de nouveaux types de photodétecteurs, le tout en technologie IV-IV (Si, Ge, et Ge1-xSnx). Le ou la candidat(e) mènera plusieurs tâches:
a-la simulation du fonctionnement mécanique des composants en utilisant des logiciels de type FEM, et le calcul des états électroniques du semiconducteur déformé
b-sur la base des résultats obtenus en a, la réalisation des composants en salle blanche (PTA: lithographie, gravure sèche, métallisation, bonding)
c-la caractérisation optique et matériau des composants fabriqués (microRaman, PL, photocourant, MEB…) à l’IRIG-PHELIQS et au LETI.
[1] A. Gassenq et al, Appl. Phys. Lett.108, 241902 (2016)
[2] J. Chrétien et al, ACS Photonics 6, 10, 2462–2469 (2019)

Développement de matériaux silicium résistants aux irradiations et intégration dans des cellules photovoltaïques pour applications spatiales

Historiquement, le photovoltaïque (PV) s’est développé conjointement avec l’essor de l’exploration spatiale. Au cours des années 90, les cellules solaires multi-jonctions, basées sur un empilement de matériaux III-V, ont progressivement remplacé le silicium (Si), bénéficiant de performances et de tenues aux irradiations électrons/protons supérieures. Aujourd’hui, le contexte est favorable à un renouveau du Si spatial : besoins de puissance PV croissants, missions à durées & contraintes modérées (LEO), cellules Si terrestres très bas coût (€/W Si ~ III-V/500), émergence de nouvelles technologies Si qui présentent des rendements élevés sur Si de type p… Dans l’espace, les cellules solaires PV sont exposées aux rayonnements cosmiques, notamment aux bombardements par des protons et électrons. Ces irradiations affectent les performances des cellules Si, essentiellement en raison de la formation de défauts volumiques recombinants pour les porteurs de charge. Afin de favoriser l’utilisation de cellules Si dans l’environnement spatial, il est donc essentiel d’améliorer leur résistance aux irradiations. Il s’agit du principal enjeu de ce projet de post-doc. Pour cela, les travaux vont tout d’abord se concentrer sur l’élaboration d’un nouveau matériau silicium, avec des propriétés compositionnelles lui conférant une résistance accrue aux irradiations par les électrons. Plus précisément, le matériau contiendra des éléments limitant la formation de défauts volumiques sous irradiations, et développant des effets de passivation électrique. Les propriétés électroniques de ce matériau seront évaluées et analysées avant et après irradiation. Dans un second temps, des cellules haut rendement à hétérojonction seront élaborées à partir de ce silicium inédit, et leurs performances électriques évaluées et analysées avant et après irradiation. Les développements pourront être appuyés par des simulations numériques, effectuées à l’échelle des dispositifs PV.

Développement de substrats grande surface pour l’électronique de puissance

L’amélioration des performances des composants en électronique de puissance constitue un enjeu majeur pour la réduction de notre consommation d’énergie. Le diamant apparaît comme le candidat ultime pour l’électronique de puissance. Cependant les petites dimensions et le prix des substrats sont des freins à l’utilisation de ce matériau. L’objectif principal du travail est de dépasser ces deux difficultés en découpant les échantillons en couches minces par SmartCut™ et en réalisant un pavage de ces couches minces pour obtenir des substrats compatibles avec la microélectronique.
Pour cela, différentes expériences seront réalisées en salle blanche. Dans un premier temps, il faudra fiabiliser le procédé SmartCut™. Des caractérisations du type microscopie optique, AFM, MEB, Raman, XPS, électriques… seront réalisées afin de mieux comprendre les mécanismes qui entrent en jeu dans ce procédé.
Le candidat pourra être amené à travailler sur les autres matériaux grand gap étudiés au laboratoire comme le GaN et le SiC ce qui lui permettra d’avoir une vision élargie sur les substrats pour l’électronique de puissance.

Conception de Matrice 2D pour Calcul Quantique sur Silicium avec Validation par Simulation

L'objectif est de concevoir une structure matricées 2D pour le calcul quantique sur silicium afin d'envisager des structures de plusieurs centaines de Qubits physique.

En particulier le sujet sera focalisé sur :
- La fonctionnalité de la structure (interaction coulombienne, RF et quantique)
- Les contraintes de fabrication (simulation et contrainte de procédé réaliste)
- La variabilité des composants (Prise en compte de paramètre de variabilité et défectivité réaliste)
- Les contraintes induites sur les algorithmes (code de correction d'erreur)
- Scalabilité de la structure vers des milliers de Qubit physiques

Le candidat travaillera au sein d'un projet de plus de cinquante personnes avec des expertises couvrant la conception, la fabrication, la caractérisation et la modélisation des qubits de spin ainsi que des disciplines connexes (cryoélectronique, algorithmes quantiques, correction d'erreurs quantiques, …)

Développement d'un pseudo-substrat relaxé à base d'InGaN porosifié par anodisation électrochimique

Dans le cadre du projet Carnot PIRLE débutant début 2021, nous recherchons un(e) candidat(e) pour un poste de post-doctorat d’une durée de 24 mois (12 mois renouvelable) avec une spécialité en matériaux. Le projet consiste à développer un pseudo-substrat relaxé à base de matériaux III-N pour les applications µLEDs, notamment pour l’émission dans le rouge. Le travail consistera principalement à développer un procédé MOCVD de reprise d’épitaxie à base d’InGaN sur un substrat innovant à base de matériaux anodisés et relaxé. Il devra à la fois caractériser le niveau de relaxation de la couche ré-épitaxiée mais aussi sa qualité cristalline. Ces deux points favoriseront la reprise d’épitaxie d’une LED rouge efficace. Le(la) candidat(e) fera partie de l’équipe projet et sera associé aux travaux de l’équipe épitaxie sur le procédé de croissance de la LED rouge et aux caractérisations optiques et électro-optiques associées.

Developpement de contacts métalliques pour les transistors MOSFET à canal MoS2

Ce travail s’inscrit dans le contexte actuel des recherches prospectives en micro-électronique qui essaye de tirer profit de nouveaux matériaux émergents aux dimensions nanométriques pour continuer la réduction d’échelle des dispositifs MOSFETs. Aujourd’hui, les matériaux 2D, en particulier les dichalcogénures de métaux de transition, présente une alternative intéressante aux technologies Si. En effet, la structure lamellaire des matériaux 2D permet de travailler avec seulement quelques monocouches. En utilisant ces matériaux comme canal du transistor, ils offrent une très bonne immunité aux effets de canal court par rapport aux transistors à effet de champ conventionnels à base de Si.
Cependant, l'introduction de ces nouveaux matériaux semi-conducteurs comme pose un certain nombre de problèmes. Le premier d’entre eux concerne la formation des contacts source et drain. Si de nombreux efforts ont été déployés ces dernières années pour réduire les résistances de contact, pour beaucoup, ces approches ne sont pas compatibles avec une intégration CMOS. L'objectif principal de ce travail est donc de proposer une compréhension approfondie des caractéristiques des contacts électriques (basées sur différents matériaux) pour identifier la résistance de contact la plus faible qu’il est possible d’obtenir. Les processus impliqués, offrant une résistance de contact optimale, doivent être compatibles en vue d’une intégration dans notre plateforme CMOS avancée 200/300mm.
Le Post-Doc étudiera en profondeur les différents mécanismes permettant la formation de faibles résistances de contact entre une couche métallique et une couche de MoS2. Il devra identifier les matériaux les plus prometteurs et développer les procédés de dépôt associés. Enfin, ces études seront couplées à de la caractérisation électrique pour bien qualifier à la fois les matériaux et les interfaces permettant un fonctionnement optimal des transistors MOSFET MoS2.

Design des différents blocs d'un algorithme de calcul hyperdimensionel au sein de matrices mémoires non-volatiles

Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd’hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory Computing »). Dans le cadre de ce projet Carnot, nous proposons d’étudier la théorie du calcul hyper-dimensionnel (HDC) qui est aujourd’hui envisagée pour répondre au besoin de l’apprentissage machine dans le domaine de l’intelligence artificielle. Pour tester cette théorie, nous proposons de l’appliquer à la détection et à la classification de signaux physiologiques pour la reconnaissance de gestes. Ce domaine de recherche très prometteur pour les applications liées à l’interaction homme-machine, donne la possibilité a un utilisateur d’interagir directement par son activité musculaire.
Par rapport aux autres méthodes de classification, le calcul HDC présente des atouts importants : il est simple dans le sens où il s’appuie sur des opérations élémentaires, une seule passe est nécessaire pour l’entrainement (donc pas de rétro-propagation avec une mise à jour de poids synaptiques). Le fait qu’une entité soit représentée sur un vecteur de grande dimension (hyper-vecteur) rend cette approche peu sensible aux erreurs et aux bruits, ce qui représente un atout majeur pour travailler avec des signaux physiologiques.

Modélisation thermodynamique des oxydes complexes pour les capteurs intelligents

La recherche de matériaux plus efficaces suit un schéma qui a très peu changé au fil des ans, impliquant des phases peu automatisées de synthèse et de caractérisation. Bien que ce schéma ait prouvé sa force dans la création de bases de connaissances, il reste inefficace car il est chronophage et couvre généralement une gamme réduite de compositions. Le projet Hiway-2-mat (https://www.pepr-diadem.fr/projet/hiway-2-mat/) vise à utiliser des approches combinatoires à haut débit et à développer des configurations autonomes pour explorer les espaces de composition des matériaux d'oxyde complexes, dans le but d'accélérer la découverte de matériaux pour les capteurs intelligents. Dans ce contexte, la méthode CALPHAD est un outil précieux pour l'exploration des matériaux, car elle peut fournir des informations sur le rôle de l'état d'oxydation ou de la pression partielle de l'oxygène sur la stabilité de la phase, et sur le degré de substitution des éléments dopants dans une matrice d'oxyde. L'objectif est de calculer les diagrammes de phase d'oxydes complexes à partir des bases de données disponibles, soit pour mieux préparer les expériences combinatoires, soit pour piloter le robot autonome à la volée, en fournissant des informations supplémentaires pour la caractérisation en ligne.
Votre rôle sera de:
1)Effectuer des simulations thermodynamiques en utilisant la méthode CALPHAD et le logiciel Thermo-Calc pour prédire la gamme de stabilité d'un ensemble d'oxydes complexes (Ba/Ca/Sr)(Ti/Zr/Sn/Hf)O3 à différentes températures et pressions partielles d'oxygène. Le candidat effectuera également un examen critique des données thermodynamiques disponibles dans la littérature.
2)Inclure des éléments clés dans la base de données disponible.
3)Développer une méthode de screening rapide pour rechercher les compositions les plus prometteuses.
4)Collaborer avec l'équipe de développement de la plateforme expérimentale pour orienter les futurs essais.

Top