Etude in-situ résolue en temps, par diffraction des rayons X sous rayonnement synchrotron, des évolutions structurales au sein d’un alliage de zirconium oxydé à haute température

Dans certaines situations accidentelles hypothétiques dans les réacteurs nucléaires à eau pressurisée (REP), la gaine en alliage de zirconium des crayons combustibles, qui constitue la première barrière de confinement des produits radioactifs, peut être exposée durant quelques minutes à de la vapeur d’eau à haute température (jusqu’à 1200°C), avant d’être refroidie puis trempée à l’eau. Le matériau de gainage subit alors de nombreuses évolutions structurales et métallurgiques. Afin d’étudier ces évolutions structurales de façon précise, une première campagne d’expériences a été effectuée sur la ligne BM02 de l’ESRF sur un four prototype permettant de contrôler parfaitement l’atmosphère et la température. Deux taches seront confiées au candidat : continuer et finir les dépouillements de la première expérience (détermination de fraction de phase, de contraintes résiduelles…)et préparer une nouvelle proposition d’expériences complémentaires pour mi 2020.

Réalisation des neurones impulsionnels spintroniques

Dans le cadre du projet national ANR SpinSpike, le laboratoire Spintec ouvre un poste de chercheur postdoctoral. Le candidat travaillera en collaboration avec l'UMPhy CNRS-Thales et Thales TRT. L'objectif est la réalisation d'une preuve de concept de neurones artificiels en utilisant des jonctions tunnel magnétiques capables de générer des signaux et de les propager entre des neurones artificiels couplés.
Le candidat doit avoir une solide expérience en nanofabrication et doit être familiarisé avec les techniques courantes de lithographie optique et par faisceau électronique ainsi que les différentes techniques de gravure. Le candidat peut également être impliqué dans la caractérisation électrique des dispositifs.
Le poste devrait commencer le 1er avril 2021 et durer jusqu'à 2 ans conjointement entre l'équipe RF et l’équipe MRAM de Spintec. Le contrat sera géré par le CEA et financé par l'Agence ANR.
Nous offrons un environnement international et compétitif, des équipements de pointe et la possibilité d'effectuer des recherches au plus haut niveau. Nous encourageons le travail d'équipe dans un environnement diversifié et inclusif et accueillons toutes sortes de candidats. Plus d'informations sur le laboratoire Spintec www.spintec.fr.

Méthodes parcimonieuses appliquées à la tomographie électronique: caracterisation quantitative multi-dimensionnelle de nanomatériaux

La tomographie électronique (ET) est couramment utilisée pour l’analyse tridimensionnelle de la morphologie à l’echelle nanométrique. Très récemment, des progrès en instrumentation ont permis l’essor de la tomographie analytique, basée sur des modes de spectroscopie tels que la perte d’énergie des électrons (EELS : electron energy loss spectroscopy) ou l’analyse dispersive en énergie (EDX : energy dispersive X-ray spectroscopy). Cette technique cependant nécessite des temps d’acquisition assez longs, et des doses d’irradiation élevées. Ce projet consiste à explorer des approches parcimonieuses pour améliorer la résolution et réduire les temps d’acquisition. Plus précisément, nous envisageons d’aborder les deux tâches suivantes: 1. comparer les algorithms de reconstruction à base de minimization de la variation totale (TVM), ondelettes orthogonales ou non-décimales, curvelets en 3D ou ridgelets/shearlets, sur des nanomatériaux avec des structures/textures variées; 2. Comparer la PCA avec de nouvelles méthodes parcimonieuses de débruitage et de démélange spectral. Le code sera développé en Python, en utilisant les librairies Hyperspy (hyperspy.org) et PySAP (https://github.com/CEA-COSMIC/pysap).
Ce projet multidisciplinaire regroupe l’expertise du coordinateur en ET, de Philippe Ciuciu en IRM (DRF/Joliot/NEUROSPIN/Parietal), et de Jean-Luc Starck en traitement du signal et mathématiques appliquées (DRF/IRFU/DAP/CosmoStat).

Science des données pour les matériaux hétérogènes

Pour mieux prédire les propriétés fonctionnelles des matériaux hétérogènes par des démarches basées sur la simulation numérique, il est impératif de fournir des données fiables concernant l’agencement spatial des phases constitutives des matériaux ainsi que leurs propriétés. Dans ce but, de nombreux outils expérimentaux sont couramment employés pour caractériser spatialement les propriétés physiques et chimiques des matériaux, générant des données multispectrales. Un axe de progrès pour une meilleure compréhension des phénomènes est donc la combinaison des différentes données d’imagerie par les techniques de la science des données. L’objectif de ce post-doc est d’enrichir les connaissances matériau, par la découverte/quantification des corrélations dans les données (par exemple établir des liens entre la composition chimique et le comportement mécanique) et de fiabiliser et réduire les incertitudes sur les propriétés, en prenant en compte des informations physiques et chimiques. Des outils logiciels seront mis au point et appliqués a des données d’intérêt acquises sur des matériaux cimentaires ou des couches de produits de corrosion d’objets archéologiques.

Report de composants de puissance pour amélioration des performances

Une thèse actuellement dans le laboratoire a permis de démontrer l’intérêt du report d’un HEMT de puissance en GaN sur une embase métallique en cuivre vis-à-vis du self heating sans dégrader la tenue en tension du composant.
Il y a encore beaucoup de points à étudier pour améliorer au mieux les composants de puissance.

Actuellement des labos comme l’IEMN, HKUST et MIT s’intéressent à ce procédé et étudient des solutions connexes.

Nous proposons de comprendre quelle est la meilleure intégration à faire pour éliminer le self-heating et augmenter la tenue en tension du composant initial. L’impact sur la polarisation du GaN et sur la qualité du gaz 2D sera analysée.
La même approche pourra être faite si besoin sur les composants RF.
Différents empilements seront réalisés par le post-doc et il aura en charge de réaliser les caractérisations électriques. La compréhension du rôle de chaque partie de la structure sera primordiale pour décider de l’empilement final.
Ce procédé sera également amené en grandes dimensions.
Ce post-doc travaillera si besoin en collaboration avec les différentes thèses sur les composants de puissance.

Composites nano-silicium/graphène pour batteries lithium-ion à haute densité d’énergie

Le sujet s’inscrit dans un projet H2020 inclus dans le Core 2 du Flagship Graphene (2018-2020), portant sur les applications du graphène dans le stockage de l’énergie. Pour les batteries Li-ion, le graphène est associé en composite avec du silicium nano-structuré pour augmenter la capacité énergétique. Le graphène enrobe le silicium, réduisant sa réactivité avec l’électrolyte et la formation de la couche de passivation (SEI), et maintient une conductivité électrique élevée dans l’électrode.
L’étude porte sur 2 technologies : l’optimisation de composites graphène-nanoparticules de Si déjà explorés dans ce projet, et la mise au point de composites inédits graphène-nanofils de Si pour comparaison. Elle sera menée dans deux laboratoires du CEA en étroite collaboration : au LITEN (recherche technologique) spécialisé dans les batteries pour le transport, et à l’INAC (recherche fondamentale) spécialisé dans la synthèse de nanomatériaux.
Le/la postdoc fera la synthèse des nanofils de Si pour ses composites par le procédé de croissance en masse récemment breveté à l’INAC. Elle/il sera en charge de la formulation des composites selon le savoir-faire du LITEN et de leur mise en œuvre en pile bouton pour tests en cyclage. Il/elle mènera une comparaison systématique du comportement électrochimique des deux types de composites à base de nanoparticules et de nanofils. La comparaison s’appuiera sur une étude du mécanisme de perte progressive de capacité et de formation de la SEI grâce aux outils de caractérisation disponibles au CEA Grenoble et dans le consortium du projet : diffraction X, microscopie électronique, spectroscopies XPS, FTIR, RMN. Elle/il participera aux travaux du consortium international (Cambridge UK, Gênes Italie, Graz Autriche).
Le contrat postdoctoral est attribué pour 2 ans.
On recherche un docteur en sciences des matériaux avec expérience en nanocaractérisation, nanochimie et/ou électrochimie.
Les candidatures sont attendues avant le 31 mai 2018.

Etude la physisorption d’espèces chimiques sur des surfaces sensibles lors des transferts en mini-environnement contrôlés en microélectronique

Une plateforme de caractérisation basée sur le concept de connexion entre équipements de procédés et de caractérisation par l’intermédiaire d’une valise de transfert sous vide a été montée permettant une caractérisation quasi in-situ des substrats et matériaux de la microélectronique. Ce concept de transfert, basé actuellement sur le simple vide statique dans une valise est satisfaisant vis-à-vis du taux résiduel de O et C à la surface de matériaux particulièrement sensibles (Ge, Ta, Sb, Ti, …) et les croissances par MOCVD sur les GST ou les III/V, ou l’analyse des couches réactives après gravure plasma. Son optimisation pour des applications plus exigeantes (collage moléculaire, reprise épitaxie) en termes de préservation des surfaces nécessite de mieux comprendre l’évolution physico chimie des surfaces.
Le travail proposé portera sur des études physico chimiques de l’évolution et de la contamination moléculaire des surfaces lors des transferts et se déroulera en salle blanche. L’XPS, la TD-GCMS et la spectrométrie de masse sur la boite elle-même (à implémenter), seront utilisés pour adresser l’origine (parois, joints, environnement gazeux, …) des espèces chimiques adsorbées et déterminer les mécanismes de physisorption à la surface des substrats. Les surfaces étudiées seront suffisamment sensibles à la contamination pour extraire l’influence de l’environnement de la boite et les paramètres explorés seront la nature des joints utilisés, l’influence de l’étuvage de la boite, le niveau de vide, l’utilisation d’un mini environnement gazeux à basse pression dans la boite (nature du gaz, pression,…)

Développement de panneaux solaires flexibles pour applications spatiales

Les panneaux solaires utilisés conventionnellement pour alimenter en énergies les satellites sont encombrants et reliées entre eux par de lourdes pièces mécaniques. Plus légers et plus compacts, les panneaux solaires flexibles consistent en une peau souple servant de support aux cellules solaires qui transforment la lumière en électricité. Etant flexibles, les panneaux solaires pourraient s’enrouler ou se plier, sans l’aide de moteurs, les rendant ainsi moins lourds et coûteux que les panneaux solaires conventionnels.
D’un autre côté, le secteur des satellites est en train de migrer d’une configuration mono satellitaire à une configuration de constellation de satellites. Ces dernières années, le besoin de production de masse de satellites légers s’est accru. Les fabricants de panneaux solaires sont mis à l’épreuve sur leur capacité à affronter ces nouveaux besoins en termes de capacité de production et d’adaptabilité de leurs lignes de production. C’est exactement sur ces points que le photovoltaïque spatial peut apprendre du photovoltaïque terrestre.
Pour affronter ces nouveaux défis, le Liten a commencé à travailler sur ces sujets il y a plus de deux ans. Dans le cadre de ce post-doc, nous proposons de développer une architecture innovante de panneau solaire flexible en utilisant des procédés de fabrication à fort potentiel industriel. Nous cherchons pour cela un candidat avec une forte expérience dans le domaine des polymères et de leur mise en œuvre, avec aussi une expérience en mécanique. Toute expérience antérieure dans le photovoltaïque sera avantageusement considérée.

Développement d’actionneur piézoélectrique sans plomb en couches minces

Au sein de CEA-Tech, l’Institut LETI crée de l’innovation et la transfère à l’industrie. Le LCMA, laboratoire de composants micro-actionneurs, travaille sur l’intégration de matériaux piézoélectriques dans des microsystèmes permettant d’obtenir la fonction de transduction électromécanique. Le Titanate Zirconate de Plomb (PZT) est à ce jour le matériau piézoélectrique le plus performant pour les applications micro-actionneur. Cependant, la mise en place dans un futur proche d’une nouvelle norme concernant le taux de plomb autorisé dans les puces (directive européenne RoHS) nous amène à évaluer des matériaux sans plomb alternatifs au PZT pour les applications actionneurs piézoélectriques. Le développement de matériaux sans plomb est de fait devenu un axe majeur de la recherche sur les piézoélectriques. Ces recherches ont amené à revisiter et modifier certains matériaux piézoélectriques classiques tels que les KNbO3 et BaTiO3. La famille des KNaxNb1-xO3 (KNN) a notamment été identifiée comme une piste prometteuse. L’objectif du postdoc est donc d’évaluer des matériaux piézoélectriques sans plomb et de comparer leurs propriétés à celle du matériau de référence, le PZT. Des véhicules de test simples seront réalisés dans la salle blanche du LETI pour être ensuite caractérisés au moyen de différentes techniques disponibles dans nos laboratoires pour évaluer les performances électriques et piézoélectriques de ces matériaux. Dans le but de mener à bien ce travail, le candidat pourra s’appuyer sur une solide expérience des experts LETI développée depuis maintenant presque 20 ans sur les matériaux piézoélectriques en couches minces.

Microbatteries bio-compatibles et bio-résorbables pour applications médicales

Dans le cadre de son activité micro-sources d’énergie embarquées, le LETI initie des études prospectives dans le domaine des microbatteries pour applications médicales, et plus particulièrement pour l’alimentation de micro-dispositifs implantables. A cette fin, un projet labélisé Carnot impliquant deux laboratoires du LETI (microbatteries, bio-packaging) et un laboratoire CNRS (ICMCB, Bordeaux) a pour objectif la conception et l’étude de micropiles bio-resorbables.
Les principales missions consisteront donc (i) à participer à la conception, par un choix adapté de matériaux, d’un système électrochimique en film mince assurant une alimentation électrique adéquate (tension, capacité), corrodable et solubilisable dans l’organisme de manière contrôlée, (ii) à réaliser les constituants (électrodes, électrolyte) sous forme de films minces (pulvérisation cathodique, dépôt électrolytique, enduction) et à les caractériser individuellement, (iii) à finaliser la réalisation de micropiles prototypes et à étudier leur comportement.
Le travail sera réalisé à l’ICMCB (Bordeaux) au sein d’une équipe mixte CEA/CNRS, en étroite collaboration avec les laboratoires grenoblois. Les résultats obtenus et l’activité inventive devront prioritairement faire l’objet d’une analyse de propriété intellectuelle en vue de leur protection ou exploitation, ainsi que si possible de publications scientifiques.

Top