Modélisation de la cinétique des amas de défauts interstitiels dans les métaux CC après l’implantation d’hélium.
Les matériaux de structure des réacteurs nucléaires subissent des conditions d’irradiation sévères qui peuvent modifier leurs propriétés mécaniques. Afin de pouvoir suivre la cinétique atomique qui mène à des structures complexes responsables du vieillissement de matériaux, il faut se tourner vers la simulation numérique. Dans le cadre de l’ANR EPIGRAPH nous allons combiner les techniques expérimentales et les calculs numériques pour mieux caractériser la cinétique des défauts interstitiels dans les métaux cubiques centrés. Nous avons récemment proposé une nouvelle structure tridimensionnelle périodique pour les amas d’interstitiels dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Afin de détecter ces amas expérimentalement, une idée est de les faire grandir après implantation d’hélium [2]. Cette démarche sera réalisée dans divers métaux CC dans le cadre du projet ANR EPIGRAPH, en collaboration avec Chimie ParisTech, GEMaC et LPS.
Dans ce projet, la tâche de modélisation comporte deux directions:
- Les calculs ab-initio, effectués par le postdoc, vont apporter les informations atomistiques sur la croissance des défauts d’irradiation.
- Les résultats des calculs ab-initio seront ensuite utilisés pour paramétrer un modèle cinétique basée sur la dynamique d’amas [3]. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts sur de temps longs.
Le travail de modélisation sera réalisé en étroite collaboration avec la partie expérimentale.
[1] M. C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 108 (2012) 025501
[2] S. Moll, T. Jourdan, H. Lefaix-Jeuland, Phys. Rev. Lett. 111 (2013) 015503
[3] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014)
Automatisation du pilotage d’un noyau de calcul éléments finis basé sur une stratégie de décomposition de domaine. Application au contrôle non-destructif par ultrasons.
Un des axes majeurs d’activité du Département Imagerie et Simulation pour le Contrôle (DISC) du CEA LIST est de proposer un ensemble d’outils de simulation et de modélisation pour le contrôle non-destructif (CND) mis à disposition dans la plateforme de calcul CIVA. La majeure partie des outils de modélisation pour le contrôle par ultrasons, proposés par le Laboratoire de Simulation et Modélisation en Acoustique (LSMA), sont basés sur des méthodes dites semi-analytiques. Bien que très efficaces, la précision de ces méthodes est mise à défaut lorsque certains phénomènes critiques (ondes de tête, caustiques) ou des spécificités du matériau (défaut ou hétérogénéités) apparaissant lors du contrôle. Afin de palier à ces limites de validité, une des activités du LSMA est de proposer un couplage entre les méthodes semi-analytiques et des méthodes numériques. Suivant cette stratégie, un logiciel basé sur des éléments finis d’ordre élevé combinés avec une stratégie de décomposition de domaine est développé au sein du laboratoire pour des configurations 3D. L’objectif principal du travail proposé est d’augmenter la complexité des configurations accessibles à cette stratégie au sein de la plateforme CIVA , par exemple la prise en compte de conditions de couplage fluide-structure notamment pour des défauts débouchants en fond de pièce.
Synthèses de nanoparticules pour application photovoltaïque couche mince
Le poste proposé est un contrat postdoctoral de 2 ans au sein du Laboratoire de nano-Chimie et de Sécurité des Nanomatériaux, du Département de Technologies des Nano-Matériaux du LITEN. Il s’inscrit dans le cadre d’un projet qui a pour ambition de développer de nouveaux matériaux absorbeurs pour la réalisation de cellules photovoltaïques couche mince à partir d’élément abondant et par des techniques bas coûts.
La personne recherchée aura préférentiellement une expérience dans la synthèse chimique de nanoparticules par des procédés humides avec une compétence matériaux, ainsi que la formulation en voie liquide et le dépôt de couches minces par les techniques précurseur liquide. Le travail portera sur la synthèse de nanoparticules par différents procédés, leurs caractérisations physicochimiques ainsi que leur mise en œuvre, tout d’abord sous forme d’encre et ensuite sous forme de couches minces déposées par voie liquide. Les conditions de dépôt et de recuit de la couche permettront d’obtenir le matériau absorbeur souhaité seront étudiées. Ce travail s’inscrit dans le cadre d’un projet ANR avec plusieurs partenaires académiques et industriels avec une forte composante appliquée puisque le but final est d’aboutir à la réalisation de cellules photovoltaïques.
Purification de l’hydrogène issu d’un reformeur par un dispositif électrochimique
Ce projet vise à mettre en place un nouvel axe de recherche et développement sur les dispositifs de purification pour les reformeurs pour alimenter les piles à combustible en hydrogène. Ce travail est de première importance pour réaliser des systèmes à base de piles à combustible alimentés par différentes sources d’hydrocarbures. Utilisée en mode « power full » ou « range extender », le reformeur et son système de purification des gaz sont des éléments de la chaîne qu’il convient d’optimiser
L’objectif du projet est de proposer un dispositif électrochimique de purification du gaz issu d’un reformeur dont le principe de base s’apparente à celui d’un électrolyseur PEM. Les gaz issus du reformeur subissent une oxydation électrocatalytique sélective permettant de séparer l’hydrogène des polluants usuels et d’alimenter directement une pile à combustible.
Le projet portera principalement sur la sélection et la caractérisation des performances électrocatalytiques de catalyseurs ainsi que la réalisation de prototypes fonctionnels.
Ces développements permettront d’évaluer la pertinence économique du dispositif vis-à-vis d’autres systèmes et d’identifier les axes de recherche à développer par la suite.
Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée
Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.
Mise en oeuvre de nanomatériaux piézoélectriques pour la réalisation de capteurs et systèmes flexibles grandes surfaces
Le CEA LETI développe des capteurs innovants ultrasouples permettant la mesure de contraintes en exploitant les propriétés piézo-électriques de nanofils de Nitrure de Gallium (GaN) auto organisés. Les étapes de fabrication sont : i) croissance des nanofils, ii) organisation des nanofils, iii) encapsulation, iv) établissement des contacts. Des démonstrateurs ont déjà été réalisés sur de petites surfaces (1,5 cm²) en utilisant la technique du Langmuir Blodgett pour permettre l’organisation des nanofils. Ce projet vise à augmenter la surface des capteurs et à contrôler l’assemblage 1D et 2D des nanofils, en utilisant notamment une technologie au déroulé innovante du CEA LITEN, appelée Boostream®, dont les fonctionnalités sont similaires au LB dans sa configuration de base.
Le but de ce post doctorat est de développer une nouvelle brique technologique pour l’équipement Boostream® afin de permettre une organisation contrôlée des nanofils dans une configuration prédéfinie. Le candidat aura en charge d’optimiser l’assemblage des nanofils,l’obtention du film structuré ainsi que la fabrication, l’intégration et la caractérisation des transducteurs piézoélectriques aux dimensions de 15x15 cm².
Plus généralement, ce post doc donne l’opportunité de développer une connaissance générique pour manipuler des micro ou nanofils ou encore des fibres donnant accès à de nouvelles solutions techniques pour de nombreux domaines applicatifs comme la structuration de surface, la peau électronique, l’énergie…
Dispositif d’analyse in situ par LIBS de milieux hostiles hautes températures
Le projet de recherche proposé vise à mettre au point un dispositif d’analyse in situ par la technique LIBS de milieux liquides en conditions extrêmes comme les matériaux à haute température de fusion ou les métaux liquides hautement volatils utilisés pour le développements de la production d’énergies décarbonnées. Le projet met en œuvre deux équipes du CEA spécialisées dans l’instrumentation LIBS, le développement analytique et les milieux à haute température.
A haute température, les métaux fondus présentent une forte réactivité en surface conduisant à des processus d’oxydation, nitruration... L’analyse non intrusive de cette surface par LIBS conduit à des résultats non représentatifs de la composition du métal fondu. Dans ce projet, un nouveau concept d’analyse intrusive en volume, basé sur un brassage mécanique couplé au dispositif d’analyse par LIBS est préconisé. Ce concept, protégé par un brevet CEA, permet le renouvellement de la surface du métal en fusion en maintenant une meilleure stabilité de la surface à analyser. Le projet aura pour objectif de mettre au point un démonstrateur dédié à l’analyse de tels milieux par LIBS, qui sera validé pour l’analyse d’impuretés dans le silicium liquide (T > 1450 °C) pendant les procédés de purification et de cristallisation pour les applications solaires photovoltaïques. A l’issue du projet, le système pourra être adapté puis testé au sein des équipes de la DEN pour l’analyse in situ de la pureté du sodium liquide, fluide caloporteur des réacteurs nucléaires de génération 4.
Membranes conductrices protoniques à base de réseaux interpénétrés de polymères pour piles à combustible
Ce sujet se place dans le cadre du développement des piles à combustible à membrane échangeuse de protons (PEMFC), et a plus précisément pour objectif d’améliorer leur performance et leur durée pour un fonctionnement au-dessus de 100°C à faible humidité relative.
Les membranes perfluorosulfonées de type Nafion® constituent la référence pour la PEMFC du fait qu’elles présentent à la fois une conductivité protonique élevée à l’état hydraté ainsi qu’une bonne stabilité chimique. Néanmoins, leur conductivité protonique à une humidité relative inférieure à 70% chute, notamment au-dessus de 100°C, en raison d’une densité de groupements conducteurs trop faible. Cette caractéristique constitue une limitation majeure pour leur utilisation dans les conditions de fonctionnement propres au cahier des charges de l’application automobile. Avec ce type de polymère, l’augmentation de la densité de groupe sulfonique se traduit par une diminution de la stabilité mécanique et dimensionnelle des membranes. Or, cette stabilité est déjà faible et pose des problèmes de durée de vie. L’objectif de ce sujet est de réaliser de nouvelles structures de membrane à base de réseaux interpénétrés de polymères permettant de lever l’antagonisme entre conduction protonique et stabilité mécanique. Cette stratégie, récemment brevetée par le CEA (brevet n°08 06890), repose sur l’association de deux réseaux de polymères imbriqués l’un dans l’autre, l’un sulfoné conférant les propriétés de conduction et l’autre fluoré conférant la stabilité chimique et mécanique.
Le post-doctorant fabriquera les membranes et caractérisera leurs propriétés mécaniques, de conduction protonique, de perméabilité aux gaz. Il évaluera également leurs performances et leur durée de vie en pile à combustible.
Développement de procédés de nanoimpression sur substrats souples pour applications optiques et électroniques
Ce sujet a pour objectif de développer des procédés de nanoimpression spécifiques pour divers matériaux et de les appliquer pour la réalisation de divers composants sur film plastique. Plusieurs thématiques seront abordées au travers de différents matériaux, qu’ils constituent le substrat lui-même, ou qu’ils consistent en une couche plus ou moins fine déposée sur un film plastique flexible. Une liste non exhaustive de ces matériaux est présentée ci-après. Ils correspondent à divers applications potentielles. Dans le domaine de l’électronique, des procédés d’impression de matériaux diélectriques seront étudiés. Des substrats particuliers seront également pressés pour la réalisation d’OTFTs. Dans le domaine de l’optique, la structuration de plusieurs polymères conducteurs présentant des propriétés optiques particulières est envisagée pour diverses applications. Certains de ces polymères font partie de la famille des PEDOT utilisés également dans le domaine du photovoltaique. La structuration d’empilements de polymères sera explorée pour la réalisation de structures 3D.
Enfin la possibilité d’imprimer des films de polymères chargés en nanoparticules sera aussi
analysée.
Procédé DEM’N’MELT : Optimisation des conditions de fonctionnement par modélisation
Dans le cadre du projet PROVIDENCE (Plan Relance, France), le procédé DEM'N'MELT a été développé dans le but de proposer et de commercialiser une solution de traitement et de conditionnement de déchets de haute et moyenne activité aux opérateurs de sites en démantèlement ou en remédiation, en France et à l’étranger. Dans ce cadre, des études d'optimisation de fonctionnement du procédé ont été entreprises.
Le candidat devra prendre en main les logiciels utilisés (Fluent, Workbench, SpaceClaim, Meshing), pour s’approprier les modèles existants. Les modèles devront évoluer pour :
o prendre en compte des points de mesure supplémentaires pour calibrer le modèle
o étudier la sensibilité du système aux propriétés physiques du verre
o optimiser la conduite du four et gérer la capacité d’alimentation en fonction du niveau de remplissage
o ajouter une agitation du bain de verre.
Le candidat pourra d’appuyer sur les compétences du Laboratoire LDPV, à la fois expérimentalement et en modélisation.