Autoparamétrage pour le calcul à très haute performance en couplage partitionné

La prise en compte de physique multiples et couplées est au cœur de nombreux besoins applicatifs dans des domaines aussi variés que l'aéronautique, la défense ou la biologie. C'est également un domaine d'expertise fort pour la Direction des Energies du CEA, avec de multiples domaines tels que l'interaction fluide-structure, la neutronique couplée à la thermohydraulique et/ou à la thermomécanique ou encore la modélisation des accidents graves. L'émergence des architectures exascale ouvre la voie à de nouveaux niveaux de fidélités prometteurs pour la simulation, mais augmente également de manière significative la complexité de nombreuses applications logicielles en termes de réécriture totale ou partielle. Il encourage donc spécifiquement le couplage pour limiter le travail de développement. L'idée est de rechercher chaque physique d'intérêt dans un nombre nécessairement réduit de composants logiciels hautement optimisés, plutôt que d'effectuer des développements spécifiques, éventuellement redondants, dans des applications autonomes.
Une fois que le problème multiphysique couplé a été écrit avec les niveaux de précision et de stabilité attendus, le travail proposé se concentre sur les algorithmes de résolution pour permettre au couplage entre les applications supposées être elles-mêmes exascale-compatibles, d'être résolu efficacement à l'exascale. Il convient également de noter qu'en général, les couplages considérés peuvent présenter un niveau de complexité élevé, impliquant de nombreuses physiques avec différents niveaux de rétroaction entre elles et divers schémas de communication allant d'échanges aux frontières jusqu'à des domaines se recouvrant. Le stage post-doctoral proposé, à effectuer dans le cadre du projet collaboratif ExaMA, est en particulier consacré à l'identification et à la mise au point dynamique des paramètres numériques pertinents découlant des algorithmes de couplage et ayant un impact sur l'efficacité de la simulation globale.

Implémentation et étude de modèles multiphases compressibles et de schémas numériques

Le sujet proposé se place dans le domaine de la sûreté des réacteurs nucléaires de nouvelle génération, en s'intéressant plus généralement à la compréhension et à la simulation des conséquences de transitoires énergétiques en régime post-accidentel. Il consiste à implémenter et étudier des modèles et schémas numériques pour les écoulements multiphasiques compressibles de complexité croissante dans un code de calcul C++.
Le code nommé SCONE et développé au LMAG doit permettre la simulation de l'interaction entre du corium (cœur de réacteur fondu avec les structures environnantes) et du sodium.
La complexité des phénomènes mis en jeu impose de fortes contraintes de modélisation et de résolution. En l'état un modèle compressible à N phases en équilibre de pression est opérationnel avec une résolution semi conservative sur grille décalée. Ce schéma numérique n'est pas totalement satisfaisant pour des chocs forts. Une solution est de s'appuyer sur des schémas reconnus pour ces cas comme les schémas colocalisé de type Godunov. La première étape du post doctorat est de développer cette approche pour un modèle simple. In fine, le modèle visé est un modèle multiphasique totalement hors équilibre. Suivant l'avancement des travaux, l'adaptation de schémas sur grilles décalés à ce modèle sera envisageable en prenant pour référence les résultats des schémas colocalisés précédemment validés.
Ce post-doctorat permettra globalement d'étudier des schémas numériques et modèles multiphasiques dans un cadre complexe à N phases et plus généralement de développer/consolider une compétence dans le domaine des méthodes numériques en transitoire pour les systèmes complexes.

détection d’événements répétitifs et application à la crise sismique turque de février 2023

La technique de corrélation, ou template matching, appliquée à la détection et l’analyse des événements sismiques a démontré sa performance et son utilité dans la chaîne de traitements du Centre National de Données du CEA/DAM. Malheureusement, cette méthode souffre en contrepartie de limitations qui bride son efficacité et son utilisation dans l’environnement opérationnel, liées d’une part au coût calcul d’un traitement massif des données, et d’autre part au taux de fausses détections que pourrait engendrer un traitement bas niveau. L’utilisation de méthodes de dé-bruitage en amont du traitement (exemple : deepDenoiser, par Zhu et al., 2020), pourrait de surcroît accroître le nombre de détections erronées. La première partie du projet de recherche consiste à fournir une méthodologie visant à améliorer les performances en temps de traitement du détecteur de multiplets, en faisant notamment appel aux techniques d’indexation de l’information élaborées en collaboration avec le LIPADE (méthode L-MESSI, Botao Peng, Panagiota Fatourou, Themis Palpanas. Fast Data Series Indexing for In-Memory Data. International Journal on Very Large Data Bases (VLDBJ) 2021). La seconde partie du projet porte sur le développement d’un outil de « filtrage » des fausses détections de type auto-encodeur construit par apprentissage statistique. La crise sismique Syrie-Turquie de février 2023, dominée par deux séismes de magnitude supérieure à 7,0, servira de base de données d’apprentissage pour cette étude.

Modélisation du bruit de charge dans les qubits de spin

Grace à de forts partenariats entre plusieurs instituts de recherche, Grenoble est pionnière dans le développement de futurs technologies à base de qubits de spin utilisant des procédés de fabrication identiques à ceux utilisés dans l’industrie de la microélectronique silicium. Le spin d’un qubit est souvent manipulé avec des signaux électriques alternatifs (AC) grâce à divers mécanismes de couplage spin-orbite (SOC) qui le couplent à des champs électriques. Cela le rend également sensible aux fluctuations de l'environnement électrique du qubit, ce qui peut entraîner une grande variabilité de qubit à qubit et du bruit de charge. Le bruit de charge dans les dispositifs à qubits de spin provient potentiellement d'événements de chargement/déchargement au sein des matériaux amorphes et défectueux (SiO2, Si3N4…) et des interfaces des dispositifs. L'objectif de ce postdoc est d'améliorer la compréhension du bruit de charge dans les dispositifs à qubits de spin grâce à des simulations à différentes échelles. Ce travail de recherche se fera à l’aide de méthode de type ab initio et également grâce à l’utilisation du code TB_Sim, développé au sein de l’institut CEA-IRIG. Ce dernier est capable de décrire des structures de qubits très réalistes en utilisant des modèles de liaison forte atomique et multi-bandes k.p.

Conception d'une chaîne de radiographie par contraste de phase à haute énergie

Dans le cadre d’expériences d’hydrodynamique réalisées au CEA-DAM, le laboratoire cherche à radiographier en imagerie X impulsionnelle des objets épais (plusieurs dizaines de mm), constitués de matériaux peu denses (de l'ordre de 1 g/cm3), à l'intérieur desquels se propagent des ondes de choc à des vitesses très élevées (plusieurs milliers de m/s). Pour ce type d'application, il est nécessaire d'utiliser des sources de rayons X énergétiques (au-delà de 100 keV). L’imagerie par rayons X conventionnelle, qui fournit un contraste lié à des variations de sections efficaces d’absorption, s’avère insuffisante pour capter les faibles variations de densité attendues lors du passage de l'onde de choc. Une étude théorique menée récemment au laboratoire a montré que l'exploitation complémentaire de l’information contenue dans la phase du rayonnement X devrait permettre une meilleure détectabilité. L'objectif du post-doctorat est d'apporter une preuve de concept expérimentale à cette étude théorique. Pour une plus grande facilité de mise en œuvre, le travail portera principalement sur le dimensionnement d'une chaîne de radiographie statique, où la cible est immobile et la source émet un rayonnement X continu.
Dans un premier temps, le(a) candidat(e) devra caractériser finement le spectre de la source de rayons X retenue ainsi que la réponse du détecteur associé. Dans un second temps, il (elle) s'attachera à concevoir et faire fabriquer les réseaux d'interférences adaptés à la mesure de phase haute énergie, ainsi qu’une maquette représentative des futurs objets en mouvement à caractériser. Enfin, l'étudiant(e) réalisera des mesures radiographiques qu'il (elle) comparera aux simulations prévisionnelles. Il est souhaitable que l'étudiant(e) ait de bonnes connaissances dans le domaine de l’interaction rayonnement matière et/ou en optique physique et géométrique. La maîtrise de la programmation orientée objet et/ou des langages Python et C++ serait un plus.

Optimisation d’une approche métrologique pour l’identification de radionucléides basée sur le démélange spectral

Le Laboratoire national Henri Becquerel (LNE-LNHB) situé au CEA/Saclay est le laboratoire responsable des références françaises dans le domaine des rayonnements ionisants. Depuis quelques années, il est impliqué dans le développement d’un outil d’analyse automatique des spectres gamma à faible statistique fondé sur la technique du démélange spectral. Cette approche permet notamment de répondre aux contraintes métrologiques telles que la robustesse de la prise de décision et l’estimation non biaisée des comptages associés aux radionucléides identifiés. Pour étendre cette technique à la mesure de terrain et en particulier à la déformation des spectres due aux interactions dans l’environnement d’une source radioactive, un modèle hybride de démélange spectral combinant des méthodes d’apprentissages statistique et automatique est en cours de développement. Cette solution mathématique a pour but l’implémentation d’une estimation conjointe des spectres mesurés et des comptages associés aux radionucléides identifiés. L’étape suivante sera la quantification des incertitudes des grandeurs estimées à partir du modèle hybride. L’objectif est également d’investiguer la technique du démélange spectral dans le cas de la détection des neutrons avec un détecteur NaIL. Le futur candidat contribuera à ces différentes études dans le cadre d’une collaboration avec le Laboratoire d’ingénierie logicielle pour les applications scientifiques (CEA/DRF).

Développement d'Algorithmes pour la Détection et la Quantification de Biomarqueurs à partir de Voltammogrammes

L'objectif du post-doctorat est de développer une solution algorithmique et logicielle performante permettant la détection et la quantification des biomarqueurs d'intérêt à partir de voltammogrammes. Ces voltammogrammes sont des signaux unidimensionnels issus de capteurs électrochimiques innovants. L'étude sera réalisée en étroite collaboration avec un autre laboratoire du CEA-LIST, le LIST/DIN/SIMRI/LCIM, qui proposera des capteurs électrochimiques dédiés et novateurs, ainsi qu'avec la start-up USENSE, qui développe un dispositif médical permettant la mesure de plusieurs biomarqueurs dans l'urine.

Effets des tremblements de terre sur les installations souterraines

Le Centre industriel de stockage géologique (Cigéo) est un projet de centre de stockage géologique profond de déchets radioactifs à construire en France. Ces déchets seront placés dans des colis scellés dans des tunnels conçus à 500 mètres de profondeur. Les scellements sont constitués d'un mélange de bentonite et de sable qui présente une forte capacité de gonflement et une faible perméabilité à l'eau. Dans le cadre de la démonstration de la sûreté à long terme du dépôt, il doit être démontré que les structures de scellement peuvent remplir leurs fonctions sous chargements sismiques pendant toute leur durée de vie. Afin de garantir ce futur dépôt de déchets nucléaires, le CEA et l'Andra collaborent pour travailler sur les potentiels défis scientifiques et techniques.
La réponse des scellements souterrains aux séismes est complexe en raison de l'évolution spatiale et temporelle des propriétés hydromécaniques des milieux environnants et de la structure elle-même. Une modélisation précise du comportement nécessite donc un code numérique multiphysique couplé pour modéliser efficacement les réponses sismiques de ces structures souterraines pendant leur durée de vie estimée à 100 000 ans.
La recherche proposera donc une évaluation des performances de la modélisation numérique séquentielle et parallèle par éléments finis pour l'analyse sismique des installations souterraines profondes. Ensuite, elle effectuera un échantillonnage de données synthétiques pour tenir compte des incertitudes liées aux matériaux et, sur la base des résultats obtenus lors de l'évaluation précédente, elle effectuera une analyse de sensibilité en utilisant une méthode FEM ou un processus de métamodélisation. Enfin, les résultats et les connaissances acquises dans le cadre de ce projet seront traités et interprétés afin de fournir des réponses aux besoins industriels.

Conception et validation de schémas de calcul neutroniques innovants pour les coeurs de réacteurs nucléaires sans bore soluble

Dans le cadre du projet NUWARD™, le CEA est en charge du développement et de la validation des schémas de calcul neutroniques de référence en appui à la conception du réacteur.
Au sein du SERMA/LPEC, le candidat participera aux développements de schémas de calcul innovants dédiés au coeur du réacteur NUWARD™ mettant en œuvre des modélisations avancées du code déterministe de nouvelle génération APOLLO3®, ainsi qu'à la réalisation des études pour la vérification et la validation des schémas développés.

Accélération GPU d’un code de transport déterministe DSN 3D en neutronique.

Dans le cadre des Programmes Transversaux de Compétences (PTC), les équipes du DES/ISAS/DM2S et celles du CEA-DIF montent une collaboration sur le portage GPU de leurs codes de transport déterministe en neutronique.

D’un côté, les équipe du DES/ISAS/DM2S sont en charge du développement et de la prospective sur les codes de calcul de neutronique déterministe pour la physique des réacteurs, en particulier le code APOLLO3®. De l’autre, le laboratoire de neutronique du CEA-DIF est impliqué dans le développement des codes de neutronique déterministe utilisés dans le cadre du programme Simulation.

Les deux unités cherchent aujourd’hui à préparer l’arrivée d’une nouvelle génération de supercalculateurs massivement dotés en GPU. Elles entament simultanément des études de faisabilité et de prospective sur cette thématique. Parce que les problématiques à étudier, la démarche mise en œuvre et les conclusions qui en seront tirées peuvent largement être mutualisées, il a été identifié un fort intérêt pour créer des synergies entre les deux unités. Ces synergies passent par la mise en place d’échanges réguliers et ont abouti à l’ouverture d’un poste de post-doctorat commun. Ce poste sera accueilli par les équipes du SERMA au CEA Saclay, mais constituera l’interface privilégiée entre les deux unités.

Le sujet de post-doctorat a pour objectif d’étudier le portage d’un code-jouet de neutronique déterministe DSN3D sur GPU.
Il s’appuie sur les expériences de portage déjà réalisées dans les deux unités d’accueil sur la base d’approches complémentaires : une approche haut-niveau est choisie côté DES au travers de la plate-forme Kokkos, tandis qu’une approche bas-niveau en langage Cuda est retenue côté CEA-DIF.

Top