Développement d’une cellule à Metal Support pour la production d’Hydrogène par Electrolyse à Haute Température

Le développement de Cellules à Métal Support (CMS) pour l’Electrolyse à Haute Température (EHT) constitue une innovation intéressante pour limiter les dégradations en fonctionnement de ces composants. L’augmentation de la durée de vie des cellules contribuera à réduire les coûts de revient et à positionner l’EHT comme une alternative réaliste face aux autres technologies de production d’hydrogène. La maîtrise de l’élaboration des CMS constitue toutefois un verrou important. Dans les procédés actuels, les couches fonctionnelles de la cellule sont constituées de matériaux céramiques qui sont assemblées avec le substrat métallique poreux à haute température (> 1000 °C). Les différences de comportement mécanique de ces matériaux ainsi que les conditions réductrices imposées par le métal conduisent aujourd’hui à des cellules dont les performances sont insuffisantes par rapport au cahier des charges. L’objectif du post-doctorat sera d’acquérir une meilleure connaissance des mécanismes intervenant lors de l’assemblage et de proposer et de tester des solutions technologiques pour fiabiliser l’élaboration de Cellules à Métal Support.

Développement d’outils numériques pour la simulation du contrôle non destructif par ultrasons

Le Département Imagerie et Simulation pour les Contrôles non destructifs (DISC) du CEA LIST recherche un(e) post-doc en mathématiques appliquées et calcul scientifique. Le DISC développe le logiciel CIVA (http://www-civa.cea.fr), leader mondial pour la simulation et l’expertise en contrôles non destructifs (échographie ultrasonore, méthodes électromagnétiques, radiographie, tomographie X). Dans le cadre du développement et de l’amélioration de CIVA, le post-doc recruté aura en charge le développement de méthodes numériques pour le module de simulation ultrasonore.
Les méthodes semi-analytiques implémentées dans CIVA reposent sur des hypothèses simplificatrices des phénomènes physiques mis en jeu et ont l’avantage d’être rapides et précises dans un grand nombre de configurations réalistes d’inspection. Cependant, restent des configurations pour lesquelles ces modèles trouvent leur limite et nécessitent la mise en œuvre de méthodes s’affranchissant des hypothèses physiques incriminées. Les méthodes dites numériques telles que les éléments finis, les différences finies ou les éléments finis de frontière permettent de résoudre ces problèmes, mais dans des temps de calcul incompatibles dans un contexte industriel, notamment pour les configurations 3D. Une approche pour CIVA consiste à coupler les modèles semi-analytiques et les méthodes numériques de sorte à bénéficier simultanément des avantages des deux modèles.
Les travaux du poste incluent des développements de méthodes numériques elles-mêmes, en lien avec les partenaires académiques du CEA, l’intégration dans CIVA d’une solution de maillage permettant de mettre en forme les données pour la résolution numérique, ainsi que des développements sur les couplages semi-analytique / numérique. Des solutions du type multi-boite, permettant par exemple d’optimiser les configurations comportant plusieurs défauts ou d’effectuer un couplage au niveau de la source et du défaut, seront notamment étudiées.

Méthodes de compensation (magnétique) pour la capture de forme à partir de capteurs d’orientation

Notre laboratoire travaille depuis quelques années sur la capture de forme (courbes et surfaces) en statique et en mouvement à partir de capteurs d’attitude, accéléromètres et magnétomètres par exemple, capables de fournir des informations sur leur propre orientation. Cependant, en conditions réelles les données capteurs ne fournissent pas exactement leur orientation, la mesure étant perturbée par des données extérieures (accélérations propres au mouvement, vibrations pour les uns, perturbations magnétiques pour les autres). Le but de ce travail est d’analyser ces perturbations et de proposer des prétraitements permettant de corriger les informations brutes des capteurs afin d’en extraire des données tangentielles fiables/cohérentes relativement à nos objectifs de reconstruction géométrique aussi bien dans un cadre statique que dynamique, sur quelques cas d’applications réelles telles que la présence d’éléments magnétiques perturbateurs dans l’environnement de capture.

Nous nous plaçons dans un premier temps dans le cadre de la reconstruction de la forme d’un tuyau métallique : nous cherchons alors à reconstruire une courbe avec des capteurs magnétiques perturbés (nous pourrons envisager la reconstruction de surfaces par la suite). Le travail demandé consiste à trouver les meilleures méthodes permettant de traiter ces informations perturbées, afin d’en extraire les données tangentielles nécessaires à la reconstruction de la forme (séparation de sources, fusion de données, modélisation de la perturbation, ajout d’une autre modalité capteur, etc, sont des pistes à explorer). Le post doc devra établir une étude bibliographique poussée, implémenter les différentes méthodes définies, mettre en œuvre ces méthodes en tests réels par le biais d’acquisitions de données avec notre système de capture de forme en environnement perturbé.

Réduction de modèle en dynamique vibratoire : application au génie parasismique

La complexité et la finesse des modèles numériques mis en oeuvre pour prédire le comportement des structures soumises à des sollicitations sismiques imposent bien souvent des temps de calculs de plusieurs jours pour la résolution des équations aux dérivées partielles du problème de référence.
En outre, l’étude des marges, les méconnaissances sur les paramètres constitutifs, les analyses stochastiques ou encore le recalage des modèles impose généralement de fournir cet effort numérique, non plus pour la simulation d’un seul modèle, mais d’une famille de modèles.
Afin de diminuer les temps de calculs, des techniques de réduction de modèle (Proper Orthogonal/Generalized Decomposition) peuvent être envisagées. La présente étude post-doctorale propose de définir et mettre en oeuvre (notamment dans CAST3M) une technique adaptée pour la réduction de modèles de génie civil (type béton armé) soumis à des chargements sismiques.

Détection frugale non supervisée d'anomalies de signal

Notre laboratoire, situé à Digiteo au CEA Saclay, recherche un candidat postdoc pour travailler sur la détection d'anomalies dans les processus de manufacturing, pour une durée de 18 mois à partir de février 2022. Ce travail s'inscrit dans le projet HIASCI (Hybridation des IA et de la Simulation pour le Contrôle Industriel), un projet CEA LIST sous forme de collaboration interne qui vise à développer une plateforme de méthodes et outils d'IA pour les applications en manufacturing, du contrôle qualité au monitoring de procédé. La contribution de notre laboratoire dans HIASCI consiste à développer des méthodes efficaces pour la détection d'anomalies dans des signaux acoustiques ou vibratoires, opérant sur peu de données d'apprentissage. Dans ce contexte, la détection des anomalies du signal revient à extraire des données les informations relatives au processus physique de manufacturing, qui est en général trop complexe pour pouvoir être parfaitement compris. En outre, les données réelles d'état anormaux sont relativement rares et souvent coûteuses à collecter. Pour ces raisons, nous privilégions une approche fondée sur les données, dans le cadre d'un apprentissage frugal (few-shot learning).

Conception d'une chaîne de radiographie par contraste de phase à haute énergie

Dans le cadre d’expériences d’hydrodynamique réalisées au CEA-DAM, le laboratoire cherche à radiographier en imagerie X impulsionnelle des objets épais (plusieurs dizaines de mm), constitués de matériaux peu denses (de l'ordre de 1 g/cm3), à l'intérieur desquels se propagent des ondes de choc à des vitesses très élevées (plusieurs milliers de m/s). Pour ce type d'application, il est nécessaire d'utiliser des sources de rayons X énergétiques (au-delà de 100 keV). L’imagerie par rayons X conventionnelle, qui fournit un contraste lié à des variations de sections efficaces d’absorption, s’avère insuffisante pour capter les faibles variations de densité attendues lors du passage de l'onde de choc. Une étude théorique menée récemment au laboratoire a montré que l'exploitation complémentaire de l’information contenue dans la phase du rayonnement X devrait permettre une meilleure détectabilité. L'objectif du post-doctorat est d'apporter une preuve de concept expérimentale à cette étude théorique. Pour une plus grande facilité de mise en œuvre, le travail portera principalement sur le dimensionnement d'une chaîne de radiographie statique, où la cible est immobile et la source émet un rayonnement X continu.
Dans un premier temps, le(a) candidat(e) devra caractériser finement le spectre de la source de rayons X retenue ainsi que la réponse du détecteur associé. Dans un second temps, il (elle) s'attachera à concevoir et faire fabriquer les réseaux d'interférences adaptés à la mesure de phase haute énergie, ainsi qu’une maquette représentative des futurs objets en mouvement à caractériser. Enfin, l'étudiant(e) réalisera des mesures radiographiques qu'il (elle) comparera aux simulations prévisionnelles. Il est souhaitable que l'étudiant(e) ait de bonnes connaissances dans le domaine de l’interaction rayonnement matière et/ou en optique physique et géométrique. La maîtrise de la programmation orientée objet et/ou des langages Python et C++ serait un plus.

Automatisation du pilotage d’un noyau de calcul éléments finis basé sur une stratégie de décomposition de domaine. Application au contrôle non-destructif par ultrasons.

Un des axes majeurs d’activité du Département Imagerie et Simulation pour le Contrôle (DISC) du CEA LIST est de proposer un ensemble d’outils de simulation et de modélisation pour le contrôle non-destructif (CND) mis à disposition dans la plateforme de calcul CIVA. La majeure partie des outils de modélisation pour le contrôle par ultrasons, proposés par le Laboratoire de Simulation et Modélisation en Acoustique (LSMA), sont basés sur des méthodes dites semi-analytiques. Bien que très efficaces, la précision de ces méthodes est mise à défaut lorsque certains phénomènes critiques (ondes de tête, caustiques) ou des spécificités du matériau (défaut ou hétérogénéités) apparaissant lors du contrôle. Afin de palier à ces limites de validité, une des activités du LSMA est de proposer un couplage entre les méthodes semi-analytiques et des méthodes numériques. Suivant cette stratégie, un logiciel basé sur des éléments finis d’ordre élevé combinés avec une stratégie de décomposition de domaine est développé au sein du laboratoire pour des configurations 3D. L’objectif principal du travail proposé est d’augmenter la complexité des configurations accessibles à cette stratégie au sein de la plateforme CIVA , par exemple la prise en compte de conditions de couplage fluide-structure notamment pour des défauts débouchants en fond de pièce.

Simulation de cellules solaires silicium à partir de matériau de type n : modélisation et optimisation de l’architecture.

Des technologies de fabrication de cellules à base de silicium de type n sont en cours de développement à l’INES. Le travail de simulation des cellules photovoltaïques permet d’accélérer le développement de nouvelles filières à plusieurs niveaux : interprétation physique des résultats de caractérisation, aide à la conception des dispositifs, optimisation des procédés et exploration de concepts originaux. Le sujet du post-doc est centré sur l’étude des modèles semi-empiriques pour les matériaux et les procédés utilisés pour les cellules de type n. Ces briques élémentaires seront mises en oeuvre dans un modèle complet résultant de leur assemblage de type circuit avec un outil de simulation muulti-échelle. Au final, un tel outil permettra d’optimiser la structure géométrique de l’émetteur de type p, de l’efficacité de collecte des porteurs de la face arrière et de la géométrie des contacts électriques métalliques.

Modélisation Multi-échelle des mécanismes de dégradation des polymères électrolytes dans le Piles à Combustible

Dans le cadre des études sur les phénomènes physico-chimiques intervenants dans les Piles à Combustibles, le groupe de modélisation du CEA Grenoble/LCPEM a développé un nouveau modèle multi-échelle, MEMEphys, qui décrit les phénomènes d’électrocatalyse dans les PEFC.
L’activité post-doctorale que nous proposons consistera au développement du modèle, avec la prise en compte d’une description des phénomènes de transport d’eau et de condensation. Une attention particulière sera portée aux hétérogénéités électrochimiques et aux processus de vieillissements induits par l’eau. Afin d’établir une relation entre les performances et structure et d’élucider les phénomènes de dégradation dans le MEA, le candidat devrait combiner des données expérimentales et théoriques obtenues dans nos laboratoires. D’un point de vue fondamental, ce travail nous amènera une compréhension plus profonde des mécanismes électrochimiques qui sont responsables du vieillissement des couches actives dans les Piles à Combustible à différentes échelles temporelles.

Monitoring global pour éoliennes offshore par méthodes de mesure bas coût et à déploiement simplifié

Ce projet fait suite à des travaux antérieurs focalisés sur l’instrumentation d’une éolienne on-shore avec un réseau de capteurs inertiel dont les réponses permettent la détection de modes de vibration propres à l’éolienne, en particulier du mat ainsi que le suivi en temps réel de ces réponses.
Les objectifs de ce projet sont multiples : porter ces travaux sur des éoliennes offshore; rechercher les signatures dans des bandes de fréquences plus larges; étudier la réponse des bases offshore et de leurs ancrages.
L’un des enjeux est notamment de parvenir à retrouver les signatures des éléments tournants (pales) sans instrumentation directe. Instrumenter ces éléments est en effet plus coûteux et plus impactant sur la structure.
En outre la technologie de capteurs sera adaptée au suivi du cycle de vie en fatigue des structures filaires en mouvement (câble de raccordement électrique dynamique et ancrage) dans le cas d’une éolienne off-shore. L’objectif final vise à proposer une méthode globale de suivi de la santé d’une éolienne off-shore.

Top