Résonateurs et filtres à ondes élastiques de plaque agiles en fréquence
L’accroissement du nombre de bandes de fréquences différentes devant être prises en compte pour la téléphonie mobile entraîne une explosion du nombre de filtres passe-bande utilisés dans ces systèmes. Dans cette optique, la possibilité de rendre des résonateurs et des filtres agiles en fréquence se présente comme un élément clef des futurs systèmes de transmission sans fil.
Le CEA LETI travaille depuis plusieurs années au développement de résonateurs et de filtres à ondes élastiques, notamment guidées dans des films minces piézoélectriques. En parallèle, il a proposé plusieurs concepts de résonateurs et de filtres agiles en fréquence.
Le but de ce post-doc consistera donc à approfondir ces idées et à travailler à la conception de ces composants. En interaction avec les membres de l’équipe projet responsables de la fabrication de ces composants, le candidat étudiera différentes structures permettant d’apporter de l’agilité ou de la reconfigurabilité à ces composants, proposera des solutions innovantes, et caractérisera les composants réalisés en salle blanche. Des démonstrateurs répondant à des applications concrètes seront enfin proposés et réalisés.
Développement d’un framework de calcul dédié à la réduction de modèles par la méthode des bases réduites certifiées.
De nombreux domaines de l’ingénierie requièrent de pouvoir résoudre numériquement des équations aux dérivées partielles (EDP) modélisant des phénomènes physiques.
Lorsque nous nous intéressons à un modèle mathématique qui décrit le comportement physique d’un système en s’appuyant sur une ou plusieurs EDPs paramétrées (paramètres géométriques ou physiques), il peut être souhaitable de pouvoir évaluer rapidement et de manière fiable la sortie du modèle (quantité d’intérêt) pour différentes valeurs des paramètres.
Le contexte temps-réel, nécessaire pour faire du contrôle commande, ainsi que les contextes demandant beaucoup d’évaluations des sorties du modèle (typiquement pour des méthodes d’optimisation ou d’analyse d’incertitudes et de sensibilité) s’y prêtent parfaitement.
La méthode des bases réduites est une méthode de réduction de modèle dite intrusive car, à la différence des méthodes de type non-intrusives, la réduction est basée sur la projection des opérateurs des EDPs du modèle physique.
Cette méthode permet d’obtenir de manière rapide, pour un ensemble de valeurs de paramètres donné, une approximation de l’évaluation de la sortie du modèle.
Un des points forts de la méthode est l’aspect "certifié" qui permet d’estimer l’erreur d’approximation de l’évaluation de la sortie du modèle.
L’objectif du post-doctorat est de développer un framework de calcul pour la méthode des bases réduites certifiées. Ce framework devra être basé sur la plateforme TRUST (https://sourceforge.net/projects/trust-platform/) développée au CEA et devra être suffisamment générique pour permettre de traiter différents types de problèmes (linéaires ou non, stationnaires ou non, coercifs ou non...).
Le framework devra pouvoir être utilisé dans le cas d’un modèle de mélange de deux fluides.
Simulation des matériaux par dynamique d’amas
Les alliages utilisés dans les applications nucléaires subissent une irradiation aux neutrons, laquelle introduit un grand nombre de défauts lacunaires et interstitiels. Au cours du temps, ces défauts migrent, se recombinent et s’agglomèrent pour former des amas. Ce phénomène physique affecte les propriétés mécaniques des aciers et conduit à sa fragilisation. Dans ce contexte, il est important de pouvoir simuler l’évolution de la microstructure à l’aide de la méthode de dynamique d’amas. Malheureusement, cette méthode devient inefficace lorsque plusieurs éléments d’alliage doivent être pris en compte. La difficulté provient du nombre trop élevé de variables de simulation à gérer. Le projet a pour objectif d’optimiser l’efficacité du code sur une architecture parallèle distribuée en faisant appel à des fonctions dédiées, vectorielles et matricielles, de la bibliothèque SUNDIALS. Cette librairie est utilisée pour intégrer l’équation différentielle ordinaire décrivant les réactions entre amas. Un autre aspect du travail, plus théorique, consistera à reformuler le problème non-linéaire de recherche de zéros du schéma d’intégration en tirant profit de la réversibilité des réactions chimiques. Cette propriété doit permettre la mise en oeuvre de solveurs directs et itératifs pour matrices creuses, symétriques et définies positives. Un axe de recheche explorera la combinaison des approches directs et itératives, en utilisant une méthode de factorisation multi-frontale de type Cholesky pour préconditionner des itérations de gradient conjugué.
Conception de circuit et de systèmes de communication ultra low power pour wake-up radio
Aujourd’hui, il y a une forte demande de développement de systèmes de wake-up radio autonomes dont les performances puissent être adaptées en fonction des besoins de l’application. Il est critique que ces systèmes disposent également d’horloge indépendante et ultra basse consommation. L’objectif du projet proposé est d’exploiter les capacités de la technologie CMOS FD-SOI pour développer ce type de systèmes, en améliorant la consommation et les performances des systèmes au delà de l’état de l’art, grâce aux faibles capacités et au body biasing de la technologie FD-SOI 22nm. Une attention particulière sera accordé à la mise au point de système de synthèse de fréquence à forte efficacité énergétique et faible temps d’établissement. Le candidat travaillera aussi bien sur les aspects systèmes que conception de circuit dans une équipe qui dispose d’une solide expérience sur le sujet
Développement d’outils de simulation dédiés au contrôle non destructif par thermographie infrarouge
Le CEA LIST développe des outils de simulation de procédés de contrôle non destructifs (CND), intégrés à la plate-forme CIVA. Les méthodes adressées à ce jour dans la plate-forme sont les techniques ultrasons, courants de Foucault et radiographie. Le TREFLE est, quant à lui, un laboratoire de référence en thermique et a développé des approches originales de modélisation de procédé de contrôle par thermographie infrarouge (IR). Dans le cadre d’un projet financé par la Région Aquitaine, ces deux laboratoire collaborent au développement d’outils de simulation du CND par thermographie, orientés vers les métiers du CND et accessibles à des non-numériciens.
L’objectif du post-doctorat proposé est le développement de modèles (dans un environnement Matlab) permettant la résolution en régime transitoire de problèmes de transfert de chaleur dans des milieux plans multicouches (proches de matériaux composites utilisés en aéronautique), éventuellement anisotropes, dans des conditions d’excitation flash ou périodique et correspondant à une irradiation uniforme ou ponctuelle.
Profil du candidat:
- Matlab, bon niveau,
- Connaissance des transformations intégrales,
- Connaissances physiques, expérimentales et instrumentales en thermique, et thermographie IR,
- Anglais, bon niveau de communication scientifique (rédaction de publication, présentations des travaux).
Elaboration de bases de données pour l’identification de radionucléides par réseaux de neurones (projet NANTISTA)
Le projet NANTISTA (Neuromorphic Architecture for Nuclear Threat Identification for SecuriTy Applications) s’inscrit dans le cadre de la prévention du trafic illicite des matières nucléaires pouvant être passées aux frontières internationales. L’objectif est le développement d’une plateforme de détection à base de scintillateurs plastiques pour l’identification rapide par réseaux de neurones des radionucléides tels que les matières fissiles. Le sujet post-doctoral porte sur le développement de la chaîne de mesures et sur l’élaboration de bases de données pour l’apprentissage et l’optimisation des réseaux de neurones. Les bases de données seront construites à partir de mesures expérimentales avec des sources radioactives. Des simulations rayonnement-matière (codes Monte Carlo Geant4 ou Penelope) seront également implémentées afin d’enrichir ces bases de données.
Planification distribuée optimale de ressources énergétiques. Application aux réseaux de chaleur.
Les réseaux de chaleur en France alimentent plus d’un million de logements et délivrent une quantité de chaleur égale à environ 5% de la chaleur consommée par le secteur résidentiel et tertiaire. De ce fait, ils représentent un potentiel important pour l’introduction massive d’énergies renouvelables et de récupération. Cependant, les réseaux de chaleur sont des systèmes complexes qui doivent gérer un grand nombre de consommateurs et de producteurs d’énergie, répartis dans un environnement géographique étendu et fortement ramifié. Dans le cadre d’une collaboration entre le CEA-LIST et le CEA-LITEN, le projet STRATEGE vise à une gestion dynamique et optimisée des réseaux de chaleur. Nous proposons une approche pluridisciplinaire, qui intègre à la fois la gestion avancée du réseau par les Systèmes Multi-Agents (SMA) et la modélisation multi-physique simplifiée (hydraulique et thermique) du transport et de la valorisation de l’énergie calorifique sur Modelica.
Il s’agit de concevoir des mécanismes de planification et d’optimisation pour l’allocation de ressources de chaleur. Ces mécanismes devront intégrer les descriptions en provenance d’un Système d’Information Géographique et les prédictions de consommation, production et pertes en ligne calculées grâce aux modèles physiques simplifiés. On prendra ainsi en compte plusieurs caractéristiques du réseau : le caractère continu et dynamique de la ressource ; des sources avec des comportements, des capacités et des coûts de production différents ; la dépendance de la consommation/production à des aspects externes (météo, prix de l’énergie) ; les caractéristiques internes du réseau (pertes, capacité de stockage). Les algorithmes développés seront implémentés sur une plateforme de pilotage multi-agent existante et constitueront la brique principale d’un moteur d’aide à la décision pour la gestion des réseaux de chaleur qui devra fonctionner en environnement simulé et dans un deuxième temps en ligne sur un système réel.
Acquisition comprimée pour l’imagerie ultrasonore : développement de méthodes et réalisation d’un prototype de capteur
En contrôle non destructif ultrasonore, les capteurs multiéléments permettent d’inspecter les structures pour assurer la sécurité des sites et des installations. Le nombre d’éléments formant un capteur est aujourd’hui le facteur dimensionnant la méthode de contrôle : son efficacité et sa rapidité de scan mais aussi le coût et le volume de l’instrument. Ce projet vise à développer un prototype de capteur multiélément avec un nombre réduit d’éléments, mais sans détériorer la qualité de l’imagerie par rapport aux instruments existants. Pour ce faire, l’acquisition comprimée (en anglais Compressed Sensing ou CS), théorie récente de traitement de signal permettant d’outrepasser les contraintes d’échantillonnage classique et de reconstruire des signaux à partir de mesures fortement sous-échantillonnées, sera utilisée. Ainsi, le processus de mesure ultrasonore devra être entièrement repensé pour répondre aux conditions d’application du CS, en particulier l’incohérence et la parcimonie des mesures. Les résultats attendus de ce projet sont une réduction d’un facteur jusqu’à 5 du nombre d’éléments d’un capteur, ce qui constituerait une véritable révolution dans le domaine du contrôle, avec des applications directes dans la plupart des secteurs industriels.
Ce projet implique les entités suivantes du CEA Saclay: le Département d’Imagerie et de Simulation pour le Contrôle pour les aspects contrôle et capteur ultrasons ainsi que les laboratoires Neurospin et Cosmostat apportant leurs expertises dans le domaine de l’acquisition comprimée, principalement appliquée dans les domaines de l’imagerie médicale et de l’astrophysique respectivement. La collaboration de ces trois laboratoires, chacun parmi les leaders mondiaux dans leurs domaines respectifs, garantira la création d’une nouvelle famille de capteurs plus performants.
Allocation distribuée de ressources par les systèmes multi-agents. Application aux réseaux de chaleur
Les réseaux de chaleur en France alimentent plus d’un million de logements et délivrent une quantité de chaleur égale à environ 5% de la chaleur consommée par le secteur résidentiel et tertiaire. De ce fait, ils représentent un potentiel important pour l’introduction massive d’énergies renouvelables et de récupération. Cependant, les réseaux de chaleur sont des systèmes complexes qui doivent gérer un grand nombre de consommateurs et de producteurs d’énergie, répartis dans un environnement géographique étendu et fortement ramifié. Dans le cadre d’une collaboration entre le CEA-LIST et le CEA-LITEN, le projet SIGMA vise à une gestion dynamique et optimisée des réseaux de chaleur. Nous proposons une approche pluridisciplinaire, qui intègre à la fois la gestion avancée du réseau par les Systèmes Multi-Agents (SMA), la prise en compte des contraintes spatiales par des Systèmes d’Information Géographique (SIG) et la modélisation physique simplifiée du transport et de la valorisation de la chaleur.
Il s’agit de concevoir des mécanismes d’allocation dynamique de ressources de chaleur qui intègrent les descriptions en provenance du SIG et les prédictions de consommation, production et pertes calculées grâce aux modèles physiques. On prendra ainsi en compte plusieurs caractéristiques du réseau : le caractère continu et dynamique de la ressource ; des sources avec des comportements, des capacités et des coûts de production différents ; la dépendance de la consommation/production à des aspects externes (météo, prix de l’énergie) ; les caractéristiques internes du réseau (pertes, capacité de stockage). Le couplage avec le SIG permettra la mise en place de mécanismes d’auto-configuration de la gestion des différents réseaux et niveaux de granularité obtenus par réduction du SIG original. Le SMA devra établir de manière dynamique le lien entre les modèles simplifiés adaptés et le niveau de granularité souhaité et créer les agents nécessaires pour représenter le système.
Algorithmes en temps réel optimisés pour les Interfaces Cerveau-Machine à plusieurs degrés de liberté
Le sujet de recherche porte sur l’optimisation des algorithmes de l’Interface-Cerveau Machine (ICM) pour des applications médicales chez l’Homme (sujets tétraplégiques).
L’objectif principal pour le candidat post-doc sera d’optimiser/accélérer les calculs pour permettre l’utilisation de plusieurs degrés de libertés (jusqu’à 26) en temps réel. Le choix de caractéristiques appropriées pour les sous-ensembles permettra d’améliorer l’efficacité de calcul et la qualité du contrôle. Pour atteindre ce but, des modèles parcimonieux seront appliqués
Pour analyser les enregistrements ECoG en l’espace temps-fréquence-localisation, une transformée en ondelettes continue est utilisée. L’optimisation comprendra l’implémentation de transformée en ondelettes rapide ainsi que de code C++.
Le projet inclue aussi les tests et adaptations des algorithmes d’ICM à la transmission sans fil de des signaux avec l’implant WIMAGINE.
Finalement, l’adaptation des algorithmes pour l’environnement médical de sujets tétraplégiques (l’utilisation de tâches motrices imaginaires, la présence de stimuli dans le signal, la durée réduite des expériences) sera sous la responsabilité d’un post-doc.