Rhéologie des fontes verrières cristallisées

La formulation d’un verre de conditionnement de déchets radioactifs résulte d’un compromis entre le taux de charge en déchet, la faisabilité technologique du verre, et son comportement à long terme. Jusqu’à ce jour, tous les verres borosilicatés formulés par le CEA et élaborés à l’usine de La Hague par ORANO pour le conditionnement des déchets nucléaires présentent une fonte verrière homogène. Cela signifie qu’actuellement, les formulations verrières sont déterminées afin d’éviter tout dépassement des limites de solubilité des éléments présents dans les flux de déchets, ce afin d’éviter les phénomènes de séparation de phase (impliquant typiquement les éléments Mo, S, P) et / ou de cristallisation (impliquant typiquement les terres rares, Fe, Ni, Cr, Zn, Al, Ce, Re, Cs, Ti…) conduisant à une fonte verrière diphasique (liquide-liquide ou liquide-solide).
Aujourd’hui, le CEA souhaite étudier l’impact de la présence de particules en suspension dans un bain de verre fondu et au sein du colis de verre final respectivement sur la faisabilité technologique des verres et son comportement à long terme.
L’étude proposée ici se focalise sur la faisabilité technologique des fontes verrières cristallisées, les autres aspects étant étudiés par ailleurs. Il est en effet connu que la présence d’hétérogénéités solides dans la fonte verrière conduit à une modification des propriétés physiques de la fonte – en particulier sa rhéologie, et ses conductivités thermique et électrique, et peut engendrer des phénomènes de sédimentation. Or, ces propriétés physiques sont justement au cœur du fonctionnement des procédés de vitrification et de leur modélisation magnéto-thermo-hydraulique.
Ce post-doc aura donc pour objectif d'étudier l’impact de la présence de cristaux sur la rhéologie des fontes verrières, en vue de mieux maitriser le fonctionnement et la modélisation des procédés de vitrification.

Simulation de l’échange thermique entre fluide et structure dans des canaux turbulents

En ce moment il y a un effort considérable en Europe dans le domaine des Grands Lasers de puissance, de l’ordre du PetaWatt, avec des taux de répétition élevés (de 1 à 10 Hz) : sans parler du programme MegaJoule à Bordeaux, et du laser « Petale » - où le taux de répétition est cependant très bas – , de grands projets sont en cours en Europe Orientale avec les 3 projets « ELI », en France avec le laser « Apollon » (10 PW) , tous projets de lasers PW répétitifs pour la science et les applications. Ces grands projets entrainent – et exigent – une maitrise parfaite des défis technologiques que posent les grands lasers. Aux forts taux de répétition, la thermique est un des défis les plus importants.
Pour le relever, et préparer l’avenir, le CEA (Grenoble et Saclay, avec une collaboration du LEGI à Grenoble) a décidé de lancer un programme de R&D avec les tâches suivantes : (i) simulation du refroidissement d’amplificateurs lasers ; (ii) validation expérimentale des calculs ; (iii) conception d’un système de refroidissement adapté aux futurs lasers de puissance à fort taux de répétition : pour cela, l’hélium gazeux à basse température est un fluide particulièrement intéressant pour les raisons suivantes : 1. Travailler à basse température permet de maximiser la conductivité thermique des matériaux amplificateurs, en sorte que la température y soit bien homogène, condition sine qua non pour garder la cohérence du faisceau. 2. En outre, l’efficacité de l’amplification est supérieure lorsque l’on travaille à basse température (50 – 150 K). La maitrise de la température des amplificateurs se fait par l’échange thermique entre le fluide caloporteur et les amplificateurs.
Le post doctorat proposé se situe au niveau de la tâche (i) : simulation du refroidissement des amplificateurs et de l’écoulement de fluide caloporteur.

ELABORATION DE MONOLITHES INORGANIQUES FONCTIONNALISES PAR DES NANOPARTICULES

Depuis sa création en 2008, l’Institut de Chimie Séparative de Marcoule (ICSM) et plus particulièrement le Laboratoire des Nanoparticules pour l’Energie et le Recyclage (LNER) a acquis une compétence de synthèse et de caractérisation des matériaux poreux (BET, MEB, MET, SAXS). Notamment, la voie de synthèse de monolithes de silice à porosité hiérarchisée (mésoporeux et macroporeux) utilisant une émulsion d’huile dans de l’eau est maintenant bien maîtrisée. Ce contrat post-doctoral est destiné au développement de l’étape suivante de fonctionnalisation de ces matériaux pour les rendre pertinents au regard de multiples applications.
La voie de synthèse originale de ces monolithes, et notamment l’élaboration d’une émulsion dans le mode opératoire, permet d’envisager des méthodes de fonctionnalisation innovantes. Il serait ainsi très prometteur d’utiliser l’interface séparant les phases aqueuse et organique pour y placer des nanoparticules (NP) d’intérêt. Dans le cas qui nous intéresse le but est de préparer une émulsion à haute teneur en phase interne (>50%vol) stabilisée à la fois par des tensioactifs (nécessaire pour la mésoporosité) et par des NP d’intérêt pour fonctionnaliser la macroporosité. Les NP sont choisies pour couvrir les applications de décontamination des effluents (zéolithe, nonatitanate, clathtrate).

Synthèse et caractérisation de nouveaux matériaux fluorescents nanostructurés pour la détection de composés organiques volatils.

La présence dans les environnements intérieurs de nombreuses substances et agents (géno-)toxiques, infectants ou allergisants à effets pathogènes n’est plus à démontrer. La détection de ces substances dans l’air intérieur est devenue de fait une préoccupation sanitaire majeure pour nos sociétés. Pour répondre à ce besoin et permettre la mise au point de capteurs de « terrain » sensibles et sélectifs, différentes solutions technologiques sont à l’étude. Parmi ces méthodes, celles qui exploitent les phénomènes de fluorescence sont particulièrement intéressantes en raison de leur sensibilité élevée (limite basse de détection) et des possibilités qu’elles offrent de mettre au point des dispositifs bas coût, de faibles dimensions et faiblement consommateur d’énergie.
Le projet proposé s’inscrit dans ce contexte et vise à évaluer les potentialités d’une nouvelle famille de matériaux organiques fluorescents nanostructurés pour la détection de
traces de polluants de l’air intérieur. Le travail proposé sera mené en collaboration avec le Laboratoire de Chimie des Polymères (UMR7610-CNRS/UPMC Paris 6) spécialisé dans la
synthèse d’organogels fonctionnalisés. Il s’agira plus précisément de mettre au point la synthèse de nouveaux polymères supramoléculaires hautement poreux qui serviront soit de support à un matériau fluorescent sensible, soit fonctionnalisés de telle sorte qu’ils puissent assurer directement la reconnaissance et la détection des molécules cibles. Les propriétés physico-chimiques des matériaux ainsi réalisés seront examinées par différentes techniques. Leurs performances en présence des polluants cibles (formaldéhyde, acétaldéhyde) et d’interférents potentiels seront évaluées. Enfin, les matériaux les plus intéressants seront intégrés dans un prototype fonctionnel.

Top