ELABORATION DE MONOLITHES INORGANIQUES FONCTIONNALISES PAR DES NANOPARTICULES
Depuis sa création en 2008, l’Institut de Chimie Séparative de Marcoule (ICSM) et plus particulièrement le Laboratoire des Nanoparticules pour l’Energie et le Recyclage (LNER) a acquis une compétence de synthèse et de caractérisation des matériaux poreux (BET, MEB, MET, SAXS). Notamment, la voie de synthèse de monolithes de silice à porosité hiérarchisée (mésoporeux et macroporeux) utilisant une émulsion d’huile dans de l’eau est maintenant bien maîtrisée. Ce contrat post-doctoral est destiné au développement de l’étape suivante de fonctionnalisation de ces matériaux pour les rendre pertinents au regard de multiples applications.
La voie de synthèse originale de ces monolithes, et notamment l’élaboration d’une émulsion dans le mode opératoire, permet d’envisager des méthodes de fonctionnalisation innovantes. Il serait ainsi très prometteur d’utiliser l’interface séparant les phases aqueuse et organique pour y placer des nanoparticules (NP) d’intérêt. Dans le cas qui nous intéresse le but est de préparer une émulsion à haute teneur en phase interne (>50%vol) stabilisée à la fois par des tensioactifs (nécessaire pour la mésoporosité) et par des NP d’intérêt pour fonctionnaliser la macroporosité. Les NP sont choisies pour couvrir les applications de décontamination des effluents (zéolithe, nonatitanate, clathtrate).
Matériaux cristallins pour l’extraction sélectives de cations métalliques monovalents : compréhension du lien entre structure cristalline et sélectivité
L’extraction sélective de cations métalliques monovalents de solutions aqueuses de compositions complexes est une étape clé dans de nombreux domaines liés à l’énergie. Au cours de cette étude, des adsorbants spécifiques pour le Cs, en vue d’une décontamination d’effluents produits par l’industrie nucléaire, et pour le Li, afin de pouvoir extraire et récupérer ce métal stratégique pour le développement de batteries, seront étudiés. De par leur modularité en terme de porosité et de structure, les oxydes cristallins (type zéolithe) sont prometteurs pour extraire sélectivement de tels cations. Afin de comprendre le rôle de leur microstructure sur leurs performances et mécanismes de sorption/désorption, il est important de pouvoir identifier les sites de sorption sélectifs au sein de ces structures cristallines.
L’objectif de ce travail de recherche est ainsi, d’une part, de synthétiser des structures cristallines permettant la sorption sélective du Cs ou du Li. Puis, grâce à des caractérisations fines à l’échelle atomique ainsi que des travaux de reconstruction de structures, nous allons chercher à identifier la localisation des sites sélectifs de sorption au sein de ces matériaux et, de cette manière, mieux comprendre leurs mécanismes et propriétés de sorption.
Pour ce contrat post-doctoral, nous recherchons un docteur en science des matériaux possédant de fortes compétences en synthèse et en caractérisation de matériaux cristallins par diffractions des rayons X. Une expérience sur l’étude d’oxydes cristallins, type zéolithe, serait un plus.
Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée
Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.
Electrode composite négative à base de Nano-silicium pour batteries lithium-ion
Avec l’objectif d’améliorer les batteries de type lithium-ion, de nombreux travaux sont consacrés à la recherche de nouveaux matériaux pour la fabrication des électrodes de grande capacité. Le silicium est un matériau attractif comme élément d’électrode négative en remplacement du carbone graphitique grâce à sa forte capacité qui peut théoriquement atteindre quasiment 3579 mAh/g (Li15Si4), soit dix fois plus que le graphite (372 mAh/g, LiC6). Cependant, un problème majeur qui a empêché le développement de telles électrodes est le fort coefficient d’expansion volumétrique du silicium qui conduit à une dégradation rapide du matériau (craquage, pulvérisation de l’électrode,....) et de ses performances. Dans ce contexte, le travail du post doctorant sera d’explorer les performances électrochimiques d’électrodes négatives élaborées à partir de nanoparticules de silicium, synthétisés au CEA par pyrolyse laser. Le travail consistera à intégrer les nanoparticules dans une architecture d’électrode négative et en tester les performances. Le travail de comprehension s’axera sur la double influence de la nanostructuration des particules de silicium et de la composition/mise en oeuvre de l’électrode composite sur les performances. Ainsi, ce travail se situera à la charnière de deux laboratoires CEA spécialistes des deux points clés de l’étude (Synthèse à Saclay, élaboration et caractérisation de batteries à Grenoble).
Elaboration de nanofils Si pour des applications en microélectronique
La réalisation de capacités intégrées présentant une forte capacité surfacique nécessite un déploiement de la surface des électrodes. Dans ce travail, nous proposons d’augmenter cette surface spécifique en intégrant dans les capacités des nanofils de Si.Une première partie de ce travail sera consacrée à l’étude de compréhension et à l’optimisation du procédé de croissance de nanofils de silicium par CVD. En parallèle, les propriétés des nanofils de silicium obtenus par gravure électrochimique seront évaluées et seront comparés à celles des nanofils obtenues par CVD. Selon les caractéristiques électriques obtenues, différentes stratégies (métallisation, silicuration…) seront envisagées afin d’améliorer leur conductivité électrique.