Compréhension et modélisation des propriétés thermodynamiques et cinétiques du combustible MOX dans les réacteurs du futur
Cette étude s’inscrit dans le cadre des projets de Réacteur à Neutrons Rapides à caloporteur sodium. Le dioxyde d’uranium et de plutonium (U,Pu)O2, appelé MOX, est le combustible de référence. En fonctionnement, les pastilles de combustible sont soumises à un fort gradient thermique qui induit des phénomènes de transport, de thermo-diffusion et de vaporisation, couplés à des effets d’irradiation. Les codes de performance des combustibles sont développés pour simuler le comportement des aiguilles de combustible en condition nominale et incidentelle, jusqu’à la fusion.
L’objectif de cette étude est d’améliorer le modèle thermocinétique du MOX utilisé dans ces codes. Ce modèle repose sur la description du système U-Pu-O avec la méthode CALPHAD, couplée à une base de données de mobilités des éléments, développée avec le logiciel DICTRA. La description des défauts sera étendue avec l’introduction des lacunes métalliques et de clusters d’oxygène. La description des données thermodynamiques (potentiel d’oxygène et capacité thermique) et du diagramme de phase sera également améliorée en prenant en compte les données les plus récentes. Enfin, la base de données de mobilité, couplée au modèle Calphad, sera améliorée pour mieux décrire la diffusion dans le MOX. Les nouvelles données expérimentales mais aussi les données calculées par des méthodes de calcul à l’échelle atomique (dynamique moléculaire, ab-initio) seront utilisées.
Optimisation de la durabilité d’alliages métalliques à haute température : exploration de nouvelles conditions d’oxydation
Le projet exploratoire OPTIMIST a pour objectif d’augmenter la durée de vie des alliages métalliques (alumino- et chromino-formeurs) par formation d’une couche d’oxyde protectrice comme cela est quasiment toujours le cas pour protéger la corrosion des alliages. La grande originalité d’OPTIMIST consistera à former une couche d’oxyde possédant un minimum de défauts structuraux 0D (défauts ponctuels) et 2D (joints de grains). Cet objectif reposera sur deux stratégies distinctes : la première consistera à former une couche d’oxyde dite endogène, c’est-à-dire par pré-oxydation du substrat en choisissant minutieusement les conditions de pré-oxydation (température, milieu oxydant, pression partielle en oxygène) dans deux types de Rhines Pack spécifiquement développés au CEA/DES et à l’IJL, la seconde consistera à former une couche d’oxyde dite exogène, c’est-à-dire créée par une technique de dépôt : le HiPIMS récemment mis en service au CEA/INSTN. Différentes conditions de pré-oxydation (pour la couche endogène) et de procédé (pour la couche exogène) seront investiguées puis leurs défauts 0D et 2D seront caractérisés au SIMaP par un couplage inédit de techniques de pointe tant structurale (TEM-ASTAR) que chimique (sonde atomique, SIMS, nano-SIMS) et électronique (photoélectrochimie PEC). Enfin ces échantillons caractérisés seront corrodés dans deux milieux (sous air et en milieux sels fondus) à hautes températures (600°C pour les sels au CEA/DES, et 800 et 1000°C pour l’air à l’IJL et au SIMaP) pour juger de l’efficacité de la protection par rapport à une pré-oxydation usuelle. Les étapes de croissance de l’oxyde, sa stœchiométrie et sa microstructure (taille et forme des grains, nature des joints de grains) seront ainsi identifiées en fonction des conditions de croissances endo et exogènes de sorte à les maîtriser pour parvenir à une couche d’oxyde contenant le moins de défauts possible.
Elaboration et caractérisation d'un matériau composite oxyde/oxyde
Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une bonne tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un procédé d’élaboration de CMC oxyde/oxyde à fibres longues et/ou courtes possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Limitation de la réaction alcali-silice au sein de bétons formulés pour le conditionnement de concentrats d’évaporation
La production d’électricité d’origine nucléaire génère des déchets radioactifs dont la gestion constitue un enjeu industriel et environnemental de premier plan. Ainsi, les effluents aqueux de faible ou moyenne activité peuvent être concentrés par évaporation, puis immobilisés en matrice cimentaire avant d’être envoyés en stockage. Des interactions peuvent néanmoins se produire entre certains constituants du déchet et les phases cimentaires ou les granulats et affecter la stabilité du matériau obtenu. Ainsi, la formation d’une substance gélatineuse a-t-elle été observée à la surface de certains colis de concentrats d’évaporation cimentés, produits dans les années 1980 en Belgique. Elle résulte d’une réaction entre la silice des granulats et la solution interstitielle très alcaline du matériau cimentaire. Ses propriétés diffèrent cependant de celles des gels d’alcali-réaction classiquement décrits dans le génie civil. Un travail préliminaire a permis de mieux comprendre les processus impliqués dans la formation du gel au sein des enrobés de concentrats et de caractériser ses propriétés, en lien avec sa composition et sa structure. Le projet de post-doctorat s’appuiera sur les résultats obtenus pour étudier deux approches visant à limiter le développement de la réaction alcali-silice : la diminution du taux de saturation en eau des enrobés et/ou la réduction du pH de sa solution interstitielle par carbonatation en milieu supercritique.
Ce projet de recherche s'adresse à un post-doctorant souhaitant développer ses compétences en science des matériaux et ouvrir de nouvelles perspectives pour la gestion de déchets radioactifs. Il sera mené en partenariat avec l’ONDRAF, l’Agence en charge de la gestion des déchets radioactifs en Belgique, dans le cadre d’une collaboration entre deux laboratoires du CEA Marcoule, le Laboratoire d’Etude des Ciments et Bitumes pour le Conditionnement et le Laboratoire d’Etude des Procédés Supercritiques et de Décontamination.
Rhéologie des fontes verrières cristallisées
La formulation d’un verre de conditionnement de déchets radioactifs résulte d’un compromis entre le taux de charge en déchet, la faisabilité technologique du verre, et son comportement à long terme. Jusqu’à ce jour, tous les verres borosilicatés formulés par le CEA et élaborés à l’usine de La Hague par ORANO pour le conditionnement des déchets nucléaires présentent une fonte verrière homogène. Cela signifie qu’actuellement, les formulations verrières sont déterminées afin d’éviter tout dépassement des limites de solubilité des éléments présents dans les flux de déchets, ce afin d’éviter les phénomènes de séparation de phase (impliquant typiquement les éléments Mo, S, P) et / ou de cristallisation (impliquant typiquement les terres rares, Fe, Ni, Cr, Zn, Al, Ce, Re, Cs, Ti…) conduisant à une fonte verrière diphasique (liquide-liquide ou liquide-solide).
Aujourd’hui, le CEA souhaite étudier l’impact de la présence de particules en suspension dans un bain de verre fondu et au sein du colis de verre final respectivement sur la faisabilité technologique des verres et son comportement à long terme.
L’étude proposée ici se focalise sur la faisabilité technologique des fontes verrières cristallisées, les autres aspects étant étudiés par ailleurs. Il est en effet connu que la présence d’hétérogénéités solides dans la fonte verrière conduit à une modification des propriétés physiques de la fonte – en particulier sa rhéologie, et ses conductivités thermique et électrique, et peut engendrer des phénomènes de sédimentation. Or, ces propriétés physiques sont justement au cœur du fonctionnement des procédés de vitrification et de leur modélisation magnéto-thermo-hydraulique.
Ce post-doc aura donc pour objectif d'étudier l’impact de la présence de cristaux sur la rhéologie des fontes verrières, en vue de mieux maitriser le fonctionnement et la modélisation des procédés de vitrification.
Modélisation de l’altération du combustible irradié en milieu saturé avec effet de la température
La modélisation de l'altération des combustibles irradiés dans l'éventualité d'un entreposage de longue durée en piscine ou d'un stockage géologique profond est essentiel pour prédire leur comportement à long terme. Dans l'éventualité d'un assemblage défectueux et d'un contact direct entre le combustible et l'eau, l'altération par l'eau peut conduire à une dégradation des crayons et au relâchements des radionucléides en solution. Un modèle géochimique couplant la chimie au transport (transport réactif) a fait l'objet de premiers développements en lien avec le comportement des combustibles en situation de stockage géologique profond. La plate-forme HYTEC développée par l'Ecole des Mines de Paris a été utilisée pour ces premiers développements de simulation. Ces simulations menées à 25°C prennent en compte les mécanismes d'altération des combustibles, les cinétiques réactionnelles associées et des bases de données thermodynamiques robustes. Il est aujourd'hui important dans le cadre de ce post-doctorat de poursuivre ces développements dans une gamme de température allant jusqu'à 70°C. le modèle existant devra également être adapté à d'autres conditions que celles d'un stockage et notamment à la situation d'un entreposage de longue durée dans des piscines dédiées.
Développement de la spectroscopie de masse à temps de vol tandem pour les applications en microélectronique.
Le CEA-LETI cherche à recruter un chercheur ou une chercheuse postdoctoral(e) pour développer des nouvelles applications de spectrométrie de masse des ions secondaires à temps de vol (TOF-SIMS) pour des applications en micro et nanotechnologies. Le ou la candidat(e) travaillera avec un nouvel instrument équipé avec un spectromètre de masse à temps de vol tandem, un FIN in-situ et un canon à cluster d’argon. Le projet de recherche sera articulé autour de trois axes ;
• Développent des méthodes corrélatives entre TOF-SIMS, AFM, XPS et Auger
• Amélioration de la sensibilité et efficacité des fragmentions dans la spectromètre tandem MS
• Développement des applications 3D FIB-TOF-SIMS amélioration de la résolution spatiale.
Le ou la candidat(e) aura accès à une gamme étendu d’instruments à l’état de l’art sur la plateforme de nanocaractérisation du CEA Grenoble, pourra bénéficier des échantillons fait à façon issus des différentes filières technologiques du LETI. Ce projet sera mené en étroite collaboration avec l’équipementier.
Etude et réalisation de composites C/SiC
Nous recherchons, pour différentes applications, des matériaux qui possèdent des propriétés mécaniques élevées à haute température (1000°C ou plus) et résistant à l’oxydation. La famille des matériaux Composites à Matrice Céramique (CMC), en particulier les C/SiC, semble la plus pertinente vis-à-vis de notre besoin. Cependant, il est nécessaire de mener des études pour déterminer les solutions les plus performantes parmi la grande variété des types d’architectures fibreuses et des microstructures de matrice possibles, tout en tenant compte des contraintes liées aux procédés disponibles et aux géométries visées. Ces travaux seront menés en relation avec d’autres laboratoires du CEA.
Composites nano-silicium/graphène pour batteries lithium-ion à haute densité d’énergie
Le sujet s’inscrit dans un projet H2020 inclus dans le Core 2 du Flagship Graphene (2018-2020), portant sur les applications du graphène dans le stockage de l’énergie. Pour les batteries Li-ion, le graphène est associé en composite avec du silicium nano-structuré pour augmenter la capacité énergétique. Le graphène enrobe le silicium, réduisant sa réactivité avec l’électrolyte et la formation de la couche de passivation (SEI), et maintient une conductivité électrique élevée dans l’électrode.
L’étude porte sur 2 technologies : l’optimisation de composites graphène-nanoparticules de Si déjà explorés dans ce projet, et la mise au point de composites inédits graphène-nanofils de Si pour comparaison. Elle sera menée dans deux laboratoires du CEA en étroite collaboration : au LITEN (recherche technologique) spécialisé dans les batteries pour le transport, et à l’INAC (recherche fondamentale) spécialisé dans la synthèse de nanomatériaux.
Le/la postdoc fera la synthèse des nanofils de Si pour ses composites par le procédé de croissance en masse récemment breveté à l’INAC. Elle/il sera en charge de la formulation des composites selon le savoir-faire du LITEN et de leur mise en œuvre en pile bouton pour tests en cyclage. Il/elle mènera une comparaison systématique du comportement électrochimique des deux types de composites à base de nanoparticules et de nanofils. La comparaison s’appuiera sur une étude du mécanisme de perte progressive de capacité et de formation de la SEI grâce aux outils de caractérisation disponibles au CEA Grenoble et dans le consortium du projet : diffraction X, microscopie électronique, spectroscopies XPS, FTIR, RMN. Elle/il participera aux travaux du consortium international (Cambridge UK, Gênes Italie, Graz Autriche).
Le contrat postdoctoral est attribué pour 2 ans.
On recherche un docteur en sciences des matériaux avec expérience en nanocaractérisation, nanochimie et/ou électrochimie.
Les candidatures sont attendues avant le 31 mai 2018.
Etude la physisorption d’espèces chimiques sur des surfaces sensibles lors des transferts en mini-environnement contrôlés en microélectronique
Une plateforme de caractérisation basée sur le concept de connexion entre équipements de procédés et de caractérisation par l’intermédiaire d’une valise de transfert sous vide a été montée permettant une caractérisation quasi in-situ des substrats et matériaux de la microélectronique. Ce concept de transfert, basé actuellement sur le simple vide statique dans une valise est satisfaisant vis-à-vis du taux résiduel de O et C à la surface de matériaux particulièrement sensibles (Ge, Ta, Sb, Ti, …) et les croissances par MOCVD sur les GST ou les III/V, ou l’analyse des couches réactives après gravure plasma. Son optimisation pour des applications plus exigeantes (collage moléculaire, reprise épitaxie) en termes de préservation des surfaces nécessite de mieux comprendre l’évolution physico chimie des surfaces.
Le travail proposé portera sur des études physico chimiques de l’évolution et de la contamination moléculaire des surfaces lors des transferts et se déroulera en salle blanche. L’XPS, la TD-GCMS et la spectrométrie de masse sur la boite elle-même (à implémenter), seront utilisés pour adresser l’origine (parois, joints, environnement gazeux, …) des espèces chimiques adsorbées et déterminer les mécanismes de physisorption à la surface des substrats. Les surfaces étudiées seront suffisamment sensibles à la contamination pour extraire l’influence de l’environnement de la boite et les paramètres explorés seront la nature des joints utilisés, l’influence de l’étuvage de la boite, le niveau de vide, l’utilisation d’un mini environnement gazeux à basse pression dans la boite (nature du gaz, pression,…)