Synthèse et caractérisation de ligands amino-phosphorés pour l’extraction de l’uranium en milieu sulfurique par un procédé « liquide/liquide »

Le développement de nouveaux extractants plus performants que ceux actuellement utilisés constitue donc un enjeu important pour l’industrie minière de l’uranium. En particulier, l’accès à des systèmes chélatants particulièrement affins de l’uranium tout en étant plus sélectifs vis-à-vis des ions compétiteurs et moins sensibles à l’hydrolyse reste un défi à relever.
Récemment, de nouvelles molécules bifonctionnelles du type amio-oxyde de phosphine ont démontré leur utilité pour l’extraction de l’uranyle des milieux sulfuriques avec d’excellentes propriétés en termes d’affinité et de sélectivité pour le métal.
L’objectif de ce stage postdoctoral sera d’optimiser cette famille de ligands, par la mise au point de voies de synthèses rapides, efficaces et adaptées à la préparation de quantités suffisantes d’extractant pour des études approfondies visant à optimiser le procédé

Mise au point de procédés innovants de métallisation pour la fabrication de structures d’interconnexions avancées de cellules solaires

La fabrication de cellules solaires performantes et à coût maîtrisé constitue un enjeu majeur, et mobilise de nombreuses équipes de recherches et industriels dans le monde. De nombreuses solutions technologiques sont actuellement développées et évaluées dans ce but. Ainsi, la limitation de l’ombrage des zones actives par les lignes de métal qui collectent le courant est-elle l’une des voies d’amélioration les plus prometteuses. Cette étude vise à mettre au point un nouveau procédé de fabrication de lignes métalliques étroites en utilisant un dépôt électrochimique en remplacement de la sérigraphie. Dans cette approche, le substrat conducteur est revêtu d’un masque isolant qui définit les lignes, et le métal est directement déposé par électrolyse, sélectivement sur les zones faiblement conductrices (c’est-à-dire les lignes). Les procédés seront à adapter en fonction de la nature des zones faiblement conductrices sur lesquelles devront être réalisés les dépôts electroless et/ou électrolytiques.

Approche Multi-echelle de la modélisation de solutions aqueuses d’éléments f

Les procédés de séparation des éléments mis en œuvre lors du recyclage des métaux lourds utilisent communément l’extraction liquide-liquide où l’on fait passer sélectivement des ions d’une phase aqueuse concentrée à une phase organique organisée. Ce stage post-doctoral concerne la physico-chimie de ces procédés, et plus particulièrement l ‘étude de la partie aqueuse, par une modélisation théorique aussi complète que possible.
Le but est de comprendre comment les différents effets (solvatation, forces électrostatiques, forces de Van der Waals, entropie) régissent les propriétés structurales et énergétiques de ces solutions. Une approche multi-échelle sera mise en œuvre pour des systèmes intéressants tant du point de vue fondamental que pour leur application directe dans des procédés industriels. Des méthodes modernes de modélisation (chimie quantique, simulations de dynamique moléculaire, théories des solutions) seront utilisées afin de caractériser ces systèmes à plusieurs échelles allant du moléculaire jusqu’aux propriétés thermodynamiques. Les outils utilisés, et la démarche qui sera mise en place pourront être étendus à la chimie séparative de façon générale.

Modélisation de l’évolution des amas d’interstitiels dans les métaux de structure cubique centrée après implantation d’hélium

Sous irradiation, les matériaux de structure des centrales nucléaires subissent une évolution de leurs propriétés mécaniques. Ces modifications résultent de la formation d’amas de défauts ponctuels tels que les cavités et les boucles de dislocation interstitielles. Comprendre les processus de formation de tels amas est donc un enjeu important pour la prédiction des propriétés des matériaux sous irradiation. Récemment, il a été montré par la théorie que des amas tridimensionnels, appelés amas C15, sont très stables dans le fer. Afin de détecter expérimentalement de tels amas, il est envisageable de les faire croître, comme cela a été fait pour les boucles de dislocation après implantation d’hélium. Cette approche sera menée expérimentalement dans différents métaux cubiques centrés dans le cadre de l’ANR EpigRAPH, en collaboration avec Chimie Paris Tech, le GEMaC et le LPS.

Dans ce projet, les tâches suivantes de modélisation seront effectuées par le post-doc :
- Des calculs de structure électronique seront réalisés de manière à obtenir les propriétés énergétiques des défauts ponctuels et de leurs amas dans les métaux cubiques centrés envisagés dans le projet
- Ces données seront ensuite utilisées pour paramétrer un modèle cinétique de type dynamique d’amas. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts ponctuels sur des temps longs.

Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée

Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.

Mise en oeuvre de nanomatériaux piézoélectriques pour la réalisation de capteurs et systèmes flexibles grandes surfaces

Le CEA LETI développe des capteurs innovants ultrasouples permettant la mesure de contraintes en exploitant les propriétés piézo-électriques de nanofils de Nitrure de Gallium (GaN) auto organisés. Les étapes de fabrication sont : i) croissance des nanofils, ii) organisation des nanofils, iii) encapsulation, iv) établissement des contacts. Des démonstrateurs ont déjà été réalisés sur de petites surfaces (1,5 cm²) en utilisant la technique du Langmuir Blodgett pour permettre l’organisation des nanofils. Ce projet vise à augmenter la surface des capteurs et à contrôler l’assemblage 1D et 2D des nanofils, en utilisant notamment une technologie au déroulé innovante du CEA LITEN, appelée Boostream®, dont les fonctionnalités sont similaires au LB dans sa configuration de base.
Le but de ce post doctorat est de développer une nouvelle brique technologique pour l’équipement Boostream® afin de permettre une organisation contrôlée des nanofils dans une configuration prédéfinie. Le candidat aura en charge d’optimiser l’assemblage des nanofils,l’obtention du film structuré ainsi que la fabrication, l’intégration et la caractérisation des transducteurs piézoélectriques aux dimensions de 15x15 cm².
Plus généralement, ce post doc donne l’opportunité de développer une connaissance générique pour manipuler des micro ou nanofils ou encore des fibres donnant accès à de nouvelles solutions techniques pour de nombreux domaines applicatifs comme la structuration de surface, la peau électronique, l’énergie…

Etudes sur la physique des gaz et des interactions matière/laser pour la démonstration à l’échelle laboratoire de l’épuration isotopique du palladium (naturel).

Le palladium est un métal rare dont la demande mondiale est en forte augmentation. Or, il est présent en tant que produit de fission dans les combustibles nucléaires usés qui sont retraités en France. Il serait donc intéressant de recycler ce métal. Pour cela, il est nécessaire de procéder à une épuration isotopique, afin de supprimer un des isotopes du palladium, le 107, qui est un radionucléide artificiel à vie longue émetteur béta. Dans le cadre d'un nouveau projet sur 4 ans construit en réponse à l'appel d'offre du Plan d'Investissement et d'Avenir de l’État, le Service d’Etude des Procédés d’Enrichissement propose un contrat post-doctoral ayant pour objectif la compréhension des interactions gaz/laser dans le procédé de séparation isotopique du palladium par Lasers actuellement en cours de développement. L’objectif principal du projet est la démonstration finale de la faisabilité de séparation de palladium naturel (et non radioactif) pour la phase suivante de développement d’un premier pilote.
Le post-doctorant devra en particulier assurer l’étude du mode de production de la vapeur atomique près du point de fusion du métal pur, des mesures de spectroscopie par laser dans l’UV afin d’affiner les séquences sélectives de photoionisation des isotopes désirés. Pour ce faire, il participera à la définition, au montage et au développement de l'évaporateur, et au couplage des lasers du procédé avec l’enceinte à vide. Des échanges seront mis en place sur ce sujet spécifique avec des spécialistes reconnus au sein de la Direction de la Recherche Fondamentale du CEA. Les mesures de diagnostics des lasers mais aussi les mesures provenant des interactions gaz/laser sont à développer. La programmation (en Python et/ou sous Labview) de ces outils est un point essentiel du poste proposé. Une attention particulière sera portée sur les publications à réaliser essentiellement dans le cadre des interactions gaz/laser (photoionisation sélective des atomes d’intérêt et extraction).

Synthèse de Nanocristaux

Cette étude concerne la synthèse chimique de nanocristaux émettant dans l’infra-rouge et pouvant être intégrés dans des LEDs.
Ces nanocristaux devront être caractérisés par TEM, XRD, EDX, UV-Vis, PL, NMR, FTIR.
Ces composés seront ensuite formulés de sorte à être déposés par jet d’encre.
La personne effectuera les synthèses dans un laboratoire partenaire à l’INAC/LEMOH.

Membranes conductrices protoniques à base de réseaux interpénétrés de polymères pour piles à combustible

Ce sujet se place dans le cadre du développement des piles à combustible à membrane échangeuse de protons (PEMFC), et a plus précisément pour objectif d’améliorer leur performance et leur durée pour un fonctionnement au-dessus de 100°C à faible humidité relative.
Les membranes perfluorosulfonées de type Nafion® constituent la référence pour la PEMFC du fait qu’elles présentent à la fois une conductivité protonique élevée à l’état hydraté ainsi qu’une bonne stabilité chimique. Néanmoins, leur conductivité protonique à une humidité relative inférieure à 70% chute, notamment au-dessus de 100°C, en raison d’une densité de groupements conducteurs trop faible. Cette caractéristique constitue une limitation majeure pour leur utilisation dans les conditions de fonctionnement propres au cahier des charges de l’application automobile. Avec ce type de polymère, l’augmentation de la densité de groupe sulfonique se traduit par une diminution de la stabilité mécanique et dimensionnelle des membranes. Or, cette stabilité est déjà faible et pose des problèmes de durée de vie. L’objectif de ce sujet est de réaliser de nouvelles structures de membrane à base de réseaux interpénétrés de polymères permettant de lever l’antagonisme entre conduction protonique et stabilité mécanique. Cette stratégie, récemment brevetée par le CEA (brevet n°08 06890), repose sur l’association de deux réseaux de polymères imbriqués l’un dans l’autre, l’un sulfoné conférant les propriétés de conduction et l’autre fluoré conférant la stabilité chimique et mécanique.
Le post-doctorant fabriquera les membranes et caractérisera leurs propriétés mécaniques, de conduction protonique, de perméabilité aux gaz. Il évaluera également leurs performances et leur durée de vie en pile à combustible.

Electrode composite négative à base de Nano-silicium pour batteries lithium-ion

Avec l’objectif d’améliorer les batteries de type lithium-ion, de nombreux travaux sont consacrés à la recherche de nouveaux matériaux pour la fabrication des électrodes de grande capacité. Le silicium est un matériau attractif comme élément d’électrode négative en remplacement du carbone graphitique grâce à sa forte capacité qui peut théoriquement atteindre quasiment 3579 mAh/g (Li15Si4), soit dix fois plus que le graphite (372 mAh/g, LiC6). Cependant, un problème majeur qui a empêché le développement de telles électrodes est le fort coefficient d’expansion volumétrique du silicium qui conduit à une dégradation rapide du matériau (craquage, pulvérisation de l’électrode,....) et de ses performances. Dans ce contexte, le travail du post doctorant sera d’explorer les performances électrochimiques d’électrodes négatives élaborées à partir de nanoparticules de silicium, synthétisés au CEA par pyrolyse laser. Le travail consistera à intégrer les nanoparticules dans une architecture d’électrode négative et en tester les performances. Le travail de comprehension s’axera sur la double influence de la nanostructuration des particules de silicium et de la composition/mise en oeuvre de l’électrode composite sur les performances. Ainsi, ce travail se situera à la charnière de deux laboratoires CEA spécialistes des deux points clés de l’étude (Synthèse à Saclay, élaboration et caractérisation de batteries à Grenoble).

Top