Influence de la largeur de bande et de la longueur d'onde du laser sur les instabilités paramétriques
Dans le cadre du projet Taranis initié par Thales et supporté par BPI France et en collaboration avec de nombreux partenaires scientifiques tels que le CEA/DAM, le CELIA et le LULI, un travail de dimensionnement d'une cible et d'un laser destiné à la production d'énergie en attaque directe va avoir lieu. Un prérequis à ce travail, est de comprendre les mécanismes d'interaction laser-plasma qui vont se produire lors du couplage du laser avec la cible. Ces mécanismes délétères pour la réussite des expériences de fusion peuvent être régulés par l'utilisation de laser dits « large-bande ». En outre, le choix de la longueur d'onde laser utilisée pour le dimensionnement de la cible et de l'architecture laser doit être défini. L’objectif du stage est d'étudier la croissance et l'évolution de ces instabilités (Brillouin, Raman) en présence de lasers « large bande » à la fois d'un point de vue expérimental que simulation, et ainsi de pouvoir définir les conditions lasers permettant de réduire ces instabilités paramétriques.
Etudes numériques de l’interaction laser plasma en champ intermédiaire sur le Laser Megajoule
Dans les expériences de Fusion par Confinement Inertiel (FCI), des faisceaux lasers intenses traversent une cavité remplie de gaz qui est rapidement ionisé. Ils se propagent dans le plasma ainsi formé et sont soumis à des instabilités néfastes pour réaliser la fusion. Les techniques de lissage optique consistent à briser les cohérences spatiales et temporelles des faisceaux lasers afin que leurs tailles et temps caractéristiques soient plus petits que ceux requis pour le développement des instabilités. La brisure de la cohérence spatiale est réalisée par une lame de phase qui va répartir l’énergie laser en une multitude de grains de lumière appelés points chauds. La brisure de cohérence temporelle s’effectue en élargissant le spectre grâce à un modulateur de phase et en dispersant chaque fréquence grâce à un réseau. La connaissance des caractéristiques des points chauds (largeur, longueur, contraste, temps de cohérence, vitesses …) est importante pour prédire le niveau des instabilités qui peut évoluer en fonction du temps et au cours de la propagation des faisceaux.
Par souci de simplicité, les instabilités se développant lors de l’interaction laser-plasma sont souvent étudiées autour du point de focalisation des faisceaux lasers. Or dans les expériences de FCI, les faisceaux sont focalisés près du trou d’entrée laser de la cavité qui a une longueur d’environ 1 cm. Des instabilités peuvent donc se produire à la fois en amont du meilleur foyer (à l'extérieur de la cavité) et aussi et surtout en aval de celui-ci (assez loin à l’intérieur de la cavité). Le but de ce contrat post-doctoral est d’étudier le développement des instabilités lorsqu’il se produit en champ intermédiaire (loin du meilleur foyer du faisceau laser). Nous nous concentrerons sur les instabilités de propagation (autofocalisation, diffuson Brillouin vers l’avant) et sur la rétrodiffusion Brillouin. Le travail sera réalisé grâce à des outils de diagnostics et des codes numériques existants.
Minimisation de l’empreinte laser par “machine learning” dans le contexte de la fusion par confinement inertiel
Le postdoc sera basé au laboratoire CELIA qui développe des études sur différents schémas de fusion inertielle par laser. Afin d’optimiser l’implosion de la cible, l’impulsion laser est mise en forme spatialement et temporellement, notamment par une pré-impulsion d’une centaine de picosecondes et d’intensité de quelques centaines de TW/cm2. Cependant cette dernière introduit des inhomogénéités spatiales à la surface et en volume de la cible, amplifiées par le comportement solide initial de la matière. Ces empreintes générées par la pré-impulsion vont dégrader la symétrie de la cible lors de son implosion, et donc diminuer l’efficacité du confinement inertiel. A l’heure actuelle, la plupart des modèles supposent un état plasma dès le début de l’interaction, et sont ainsi incapables de rendre compte de certaines observations expérimentales. Pour palier ce manque, nous venons de développer un outil original de simulation multi-physique qui inclut la transition de phase d’un matériau homogène induite par le laser. Afin d’atténuer l’effet d’empreinte laser, une mousse de polystyrène (matériau hétérogène) peut être déposée à la surface de la cible. Les réflexions optiques multiples dans la mousse lissent le profil spatial d’intensité laser, permettant ainsi de réduire les inhomogénéités d’absorption. Afin de réduire l’influence de l’empreinte laser, le post-doctorat aura vocation à développer un modèle microscopique décrivant l’évolution de la réponse optique d’une mousse lors de la transition solide-plasma. La première étape du travail consistera à coupler l’équation d’Helmholtz (décrivant la propagation laser) à un modèle de transition solide-
plasma, et d'étudier l'influence des paramètres. La seconde étape consistera à utiliser un algorithme d’intelligence artificielle (réseau de neurone) afin d’optimiser la réponse optique de la mousse.