Dispositifs photoniques IV-IV à déformation pilotable : application à l’émission et la détection de lumière
La déformation de la maille cristalline d’un semi-conducteur est un outil très puissant permettant de contrôler de nombreuses propriétés telles que sa longueur d’onde d’émission, sa mobilité … Un enjeu de premier plan est de pouvoir générer cette déformation dans des gammes importantes (multi%), et de manière réversible et contrôlée. L’amplification locale de la déformation est une technique récente permettant d’accumuler localement dans une constriction micronique, telle qu’un micropont, des quantités significatives de déformation (jusqu’à 4.9% pour Ge [1]). Cette approche a été mise en œuvre dans des architectures de microlasers en GeSn ainsi fortement déformés au sein du laboratoire SiNaPS [2]. Ces structures ne permettent cependant pas aujourd’hui de moduler sur demande la déformation et la longueur d’onde d’émission imposées au sein d’un même composant, celle-ci étant gelée par « design ». L’objectif de ce post doctorat de 18 mois est donc de réaliser des dispositifs photoniques de la famille des MOEMs (microsystèmes opto-électro mécaniques) permettant de combiner l’amplification locale de la déformation dans le semi-conducteur, à une fonction d’actionnement via un stimulus externe, pour aller vers 1-une microsource laser accordable large bande en longueur d’onde et 2-de nouveaux types de photodétecteurs, le tout en technologie IV-IV (Si, Ge, et Ge1-xSnx). Le ou la candidat(e) mènera plusieurs tâches:
a-la simulation du fonctionnement mécanique des composants en utilisant des logiciels de type FEM, et le calcul des états électroniques du semiconducteur déformé
b-sur la base des résultats obtenus en a, la réalisation des composants en salle blanche (PTA: lithographie, gravure sèche, métallisation, bonding)
c-la caractérisation optique et matériau des composants fabriqués (microRaman, PL, photocourant, MEB…) à l’IRIG-PHELIQS et au LETI.
[1] A. Gassenq et al, Appl. Phys. Lett.108, 241902 (2016)
[2] J. Chrétien et al, ACS Photonics 6, 10, 2462–2469 (2019)
Distribution des energies d’hydrolyse dans des verres modèles par simulation moléculaire et Machine Learning
L'objectif de ce projet est de développer un outil basé sur la modélisation moléculaire combinée à des techniques de Machine Learning pour estimer rapidement des distributions d'énergie d'hydrolyse et de reformation des liaisons chimiques à la surface de verres alumino silicates (SiO2+Al2O3+CaO+Na2O).
La première étape consistera à valider les champs de force classiques utilisés pour préparer des systèmes SiO2-Al2O3-Na2O-CaO hydratés par comparaison avec des calculs ab initio. La métadynamique sera utilisée pour comparer les mécanismes élémentaires.
L'étape suivante consistera à effectuer des calculs avec les champs de force classiques et la méthode dite "Potential Mean Force" pour estimer les distributions d'énergies d'hydrolyse et de reformation des liaisons chimiques sur de larges statistiques. Puis, grâce aux approches de Machine Learning et aux descripteurs structuraux, nous essaierons de corréler les caractéristiques des environnements locaux et ces énergies d'hydrolyse et de reformation des liaisons. Des méthodes comme le "Kernel Ridge Regression", le "Random Forrest", ou le "Dense Neural Network" seront comparées.
Au final, un outil générique sera disponible pour prédire rapidement les distributions des énergies d'hydrolyse et de reformation des liaisons pour une composition donnée de verre.
Intégration d’un pouvoir d'arrêt électronique ab initio dans les simulations de dynamique moléculaire des cascades de déplacement dans les semiconducteurs
En environnement radiatif, les effets de déplacements atomiques peuvent entrainer la dégradation des performances des composants électroniques et optoélectroniques. Dans les semiconducteurs constituant ces composants, ils créent des défauts à l’échelle atomique, qui modifient le nombre de porteurs libres et donc altérent les performances du composant.
Afin de mieux comprendre les phénomènes physiques à l’origine de ces dégradations, les effets de déplacement sont bien reproduits par simulation à l’aide de méthode de dynamique moléculaire classique. Néanmoins, une compréhension plus fine de l’influence de la structure électronique du matériau sur le nombre de défauts créés lors de la cascade de déplacement est nécessaire pour avoir des simulations précises. Pour cela, un modèle nommé électron-phonon EPH a été développé. L’objectif de ce post-doctorat sera de nourrir ce modèle avec des calculs ab initio puis de le paramétrer afin d’effectuer des simulations de dynamique moléculaire pour plusieurs semiconducteurs utilisés dans les technologies microélectroniques actuelles. Les résultats obtenus serviront à mieux comprendre et améliorer si besoin le modèle EPH.
Aimants permanents pauvres en terres rares
La transition énergétique va entrainer une très forte croissance de la demande en terres rares (TR) au cours de cette décennie, notamment en ce qui concerne les éléments (Nd, Pr) et (Dy, Tb). Ces TR, classées comme matériaux critiques, sont utilisées de façon quasi exclusive pour produire des aimants permanents de type NdFeB dont ils constituent 30% de la masse.
Plusieurs études récentes, visant à identifier de nouveaux alliages pauvres en TR et présentant des performances comparables à la phase magnétique dense Nd2Fe14B, positionnent les composés ferromagnétiques durs de type TR-Fe12 comme des solutions de substitution crédibles, permettant d'économiser plus de 35% la quantité de TR tout en gardant des propriétés magnétiques intrinsèques proches de celles de la composition Nd2Fe14B. Cependant, les développements industriels de ces alliages ne peuvent pas encore être envisagés du fait de verrous technologiques et scientifiques importants qui restent à lever afin de pouvoir produire des aimants denses de type TR-Fe12 dont la résistance à la désaimantation serait suffisante pour les applications courantes (coercitivité Hc > 800 kA/m)..
Le but du projet post-doctoral proposé est de développer des alliages Nd-Fe12 avec des performances magnétiques intrinsèques optimales et de maitriser le frittage basse températures des poudres nitrurées pour obtenir des aimants denses, avec des coercitivités > 800 kA/m, pour répondre à des applications dans la mobilité électrique.
Deux verrous technologiques et scientifiques ont été identifié:
- la compréhension du rôle des phases secondaires aux joint de grains sur la coercitivité. Ceci permettra d'implémenter le procédé d'ingénierie aux joints de grains, connu pour avoir apporté des améliorations significatives dans la coercitivité pour les aimants NdFeB
- la maitrise de l'étape de frittage des poudres à basses températures, pour éviter la décomposition de la phase magnétique, en utilisant les phases aux joints de grains
Simulation d'un milieu poreux soumis à des impacts à haute vitesse
La maîtrise de la réponse dynamique de matériaux complexes (mousse, céramique, métal, composite) suite à des sollicitations intenses (dépôt d’énergie, impact hyper-véloce) est un enjeu majeur pour de nombreuses applications développées et conduites par la Direction des Applications Militaires (DAM) du Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA). Dans cette optique, le CEA CESTA développe des modélisations mathématiques du comportement de matériaux face à des impacts hypervéloces. Ainsi, dans le cadre de l’ANR ASTRID SNIP (Simulation Numérique des Impacts dans les milieux poreux) en collaboration avec l’IUSTI (Université Aix-Marseille), des études sur le thème de la modélisation des matériaux poreux sont menées. Elles ont pour objectif d’aboutir à l’élaboration de modèles innovants plus robustes et palliant les déficits théoriques des méthodes existantes (consistance thermodynamique, préservation du principe d’entropie) Dans le cadre de ce post-doc, le candidat devra effectuer, dans un premier temps, une revue bibliographique pour comprendre les méthodes et modèles développés au sein de l’IUSTI et du CEA CESTA et comprendre leurs différences. Dans un second temps, il étudiera la compatibilité entre le modèle développé à l’IUSTI et les méthodes de résolution numériques utilisées dans le code de calcul de dynamique rapide du CEA CESTA. Il proposera des adaptations et des améliorations de ce modèle pour prendre en compte l’ensemble des phénomènes physiques que l’on souhaite capturer (plasticité, contraintes de cisaillement, présence d’inclusions fluides, endommagement) et rendre son intégration dans le code de calcul possible. Après une phase de développement, la validation de l’ensemble de ces travaux sera effectuée via des comparaisons avec les modèles physico-numériques existants ainsi que la confrontation avec les résultats expérimentaux d’impacts issus de la littérature et/ou effectués au CEA/DAM.
Développement d'un procédé de croissance cristalline
Dans le cadre de la réalisation de composants optiques de grandes dimensions pour le Laser MégaJoule, il est nécessaire d'étudier la croissance des cristaux de DKDP (KDP deutéré). Ils sont traditionnellement produits par croissance lente (la durée de croissance dépasse deux ans). Mais le laboratoire propose ici d'étudier une méthode rapide de croissance réduisant le délai de fabrication à quelques mois.
Postdoctorat sur la modélisation des qubits de spin
Un post-doctorat est ouvert à l'Institut de Recherche Interdisciplinaire de Grenoble (IRIG) du CEA Grenoble (France) sur la théorie et la modélisation des bits quantiques de spin silicium (qubits). Le projet débutera début 2022, pour une durée maximale de deux ans.
Les technologies de l'information quantique sur silicium ont suscité un intérêt croissant ces dernières années. Grenoble développe une plateforme originale basée sur la technologie « silicium sur isolant » (SOI). Afin de relever les défis des technologies de l'information quantique, il est essentiel de soutenir l'activité expérimentale avec de la modélisation avancée. Pour cela, le CEA développe activement le code « TB_Sim ». TB_Sim est capable de décrire des structures de qubit très réalistes jusqu'à l'échelle atomique lorsque cela est nécessaire, en utilisant des modèles k.p multi-bandes et des liaisons fortes atomistiques pour la structure électronique des matériaux. Les objectifs de ce projet post-doctoral sont de renforcer notre compréhension des qubits de spin et de progresser dans la conception de dispositifs et de réseaux de qubits de spin Si et Si/Ge performants et fiables en utilisant une combinaison de modèles analytiques et de simulations numériques avancées avec TB_Sim. Les sujets d'intérêt incluent la manipulation et la lecture de spin dans les qubits d'électrons et de trous, les interactions d'échange dans des matrices de qubits 1D et 2D et le fonctionnement des portes multi-qubits, la sensibilité au bruit (décohérence) et au désordre (variabilité). Ce travail s'inscrit dans le cadre du projet européen QLSI et sera fortement couplé à l'activité expérimentale à Grenoble et chez les partenaires du CEA en Europe.
Développement d'un pseudo-substrat relaxé à base d'InGaN porosifié par anodisation électrochimique
Dans le cadre du projet Carnot PIRLE débutant début 2021, nous recherchons un(e) candidat(e) pour un poste de post-doctorat d’une durée de 24 mois (12 mois renouvelable) avec une spécialité en matériaux. Le projet consiste à développer un pseudo-substrat relaxé à base de matériaux III-N pour les applications µLEDs, notamment pour l’émission dans le rouge. Le travail consistera principalement à développer un procédé MOCVD de reprise d’épitaxie à base d’InGaN sur un substrat innovant à base de matériaux anodisés et relaxé. Il devra à la fois caractériser le niveau de relaxation de la couche ré-épitaxiée mais aussi sa qualité cristalline. Ces deux points favoriseront la reprise d’épitaxie d’une LED rouge efficace. Le(la) candidat(e) fera partie de l’équipe projet et sera associé aux travaux de l’équipe épitaxie sur le procédé de croissance de la LED rouge et aux caractérisations optiques et électro-optiques associées.
Modélisation des effets de piégeages et des fuites verticales dans les substrats épitaxiés GaN sur Si
Etat de l’art : La compréhension et la modélisation des fuites verticales et des effets de piégeages dans les substrats GaN sur Si font partie des sujets cruciaux d’études visant à améliorer les propriétés des composants de puissance sur GaN : réduction du courant de collapse et des effets d’instabilités de Vth, réduction du courant de fuite à l’état OFF.
De nombreuses universités [Longobardi et al. ISPSD 2017 / Uren et al. IEEE TED 2018 / Lu et al. IEEE TED 2018] et industriels [Moens et al. ISPSD 2017] tentent de modéliser les fuites verticales mais jusqu’à l’heure aucun mécanisme clair n’émerge de ces travaux pour les modéliser correctement sur toute la gamme de tension et températures visées. De plus la modélisation des effets de piégeages dans l’épitaxie est nécessaire à l’établissement d’un modèle TCAD de dispositif robuste et prédictif.
Pour le LETI, l’intérêt stratégique d’un tel sujet est double : 1) Comprendre et réduire les effets de piégeages dans l’épitaxie impactant le fonctionnement des dispositifs GaN sur Si (current collapse, instabilités de Vth…) 2) Atteindre les spécifications de fuites @ 650V nécessaires aux applications industrielles.
Le candidat devra prendre en charge en parallèle les caractérisations électriques et les développements de modèles TCAD :
A) Caractérisations électriques avancées (I(V), I(t), substrate ramping, C(V)) en fonction de la température et de l’illumination sur des substrats épitaxiés ou directement sur des composants finis (HEMT, Diodes, TLM)
B) Etablissement d’un modèle TCAD robuste intégrant les différentes couches de l’épitaxie afin de comprendre les effets d’instabilités des dispositifs (Vth dynamique, Ron dynamique, BTI)
C) Modélisation de la conduction verticale dans l’épitaxie dans l’optique de réduire les courants de fuites à 650V
Enfin, le candidat devra être force de proposition pour améliorer les différentes parties du substrat
Modélisation des réseaux de qubits silicium-sur-isolant
Un post-doctorat est ouvert à l’Institut de Recherche Interdisciplinaire de Grenoble (IRIG, anciennement INAC) du CEA Grenoble (France) sur la théorie et la modélisation des réseaux de bits quantiques silicium-sur-isolant (qubits SOI). Cette position s’inscrit dans le cadre du projet ERC Synergy qucube, visant à développer des réseaux bidimensionnels de tels qubits. Le (la) candidat(e) sélectionné(e) devra commencer entre octobre et décembre 2019, pour une période maximale de trois ans.
De nombreux aspects de la physique des qubits silicium sont encore mal compris, de sorte qu’il est essentiel de soutenir l’activité expérimentale avec de la modélisation avancée. À cette fin, le CEA développe activement le code "TB_Sim". TB_Sim est basé sur une description k.p multi-bandes ou liaisons fortes atomistiques de la structure électronique des matériaux et comprend notamment un solveur en interaction de configurations dépendent du temps pour la dynamique des qubits.
Les objectifs de ce post-doctorat sont d’améliorer la compréhension de la physique de ces dispositifs et d’optimiser leurs design, et en particulier:
- de modéliser la manipulation, la lecture et la décohérence des spins dans les réseaux 1D et 2D de qubits SOI.
- de modéliser les interactions d’échange dans ces réseaux et d’évaluer le fonctionnement de portes multi-qubits.
Le (la) candidat(e) aura l’occasion d’interagir avec les équipes expérimentales du CEA/IRIG, du CEA/LETI et du CNRS/Néel impliquées dans quCube, et aura accès à des données sur des dispositifs à l’état de l’art.