Modélisation de la cinétique des amas de défauts interstitiels dans les métaux CC après l’implantation d’hélium.
Les matériaux de structure des réacteurs nucléaires subissent des conditions d’irradiation sévères qui peuvent modifier leurs propriétés mécaniques. Afin de pouvoir suivre la cinétique atomique qui mène à des structures complexes responsables du vieillissement de matériaux, il faut se tourner vers la simulation numérique. Dans le cadre de l’ANR EPIGRAPH nous allons combiner les techniques expérimentales et les calculs numériques pour mieux caractériser la cinétique des défauts interstitiels dans les métaux cubiques centrés. Nous avons récemment proposé une nouvelle structure tridimensionnelle périodique pour les amas d’interstitiels dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Afin de détecter ces amas expérimentalement, une idée est de les faire grandir après implantation d’hélium [2]. Cette démarche sera réalisée dans divers métaux CC dans le cadre du projet ANR EPIGRAPH, en collaboration avec Chimie ParisTech, GEMaC et LPS.
Dans ce projet, la tâche de modélisation comporte deux directions:
- Les calculs ab-initio, effectués par le postdoc, vont apporter les informations atomistiques sur la croissance des défauts d’irradiation.
- Les résultats des calculs ab-initio seront ensuite utilisés pour paramétrer un modèle cinétique basée sur la dynamique d’amas [3]. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts sur de temps longs.
Le travail de modélisation sera réalisé en étroite collaboration avec la partie expérimentale.
[1] M. C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 108 (2012) 025501
[2] S. Moll, T. Jourdan, H. Lefaix-Jeuland, Phys. Rev. Lett. 111 (2013) 015503
[3] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014)
Mise au point de procédés innovants de métallisation pour la fabrication de structures d’interconnexions avancées de cellules solaires
La fabrication de cellules solaires performantes et à coût maîtrisé constitue un enjeu majeur, et mobilise de nombreuses équipes de recherches et industriels dans le monde. De nombreuses solutions technologiques sont actuellement développées et évaluées dans ce but. Ainsi, la limitation de l’ombrage des zones actives par les lignes de métal qui collectent le courant est-elle l’une des voies d’amélioration les plus prometteuses. Cette étude vise à mettre au point un nouveau procédé de fabrication de lignes métalliques étroites en utilisant un dépôt électrochimique en remplacement de la sérigraphie. Dans cette approche, le substrat conducteur est revêtu d’un masque isolant qui définit les lignes, et le métal est directement déposé par électrolyse, sélectivement sur les zones faiblement conductrices (c’est-à-dire les lignes). Les procédés seront à adapter en fonction de la nature des zones faiblement conductrices sur lesquelles devront être réalisés les dépôts electroless et/ou électrolytiques.
Modélisation de l’évolution des amas d’interstitiels dans les métaux de structure cubique centrée après implantation d’hélium
Sous irradiation, les matériaux de structure des centrales nucléaires subissent une évolution de leurs propriétés mécaniques. Ces modifications résultent de la formation d’amas de défauts ponctuels tels que les cavités et les boucles de dislocation interstitielles. Comprendre les processus de formation de tels amas est donc un enjeu important pour la prédiction des propriétés des matériaux sous irradiation. Récemment, il a été montré par la théorie que des amas tridimensionnels, appelés amas C15, sont très stables dans le fer. Afin de détecter expérimentalement de tels amas, il est envisageable de les faire croître, comme cela a été fait pour les boucles de dislocation après implantation d’hélium. Cette approche sera menée expérimentalement dans différents métaux cubiques centrés dans le cadre de l’ANR EpigRAPH, en collaboration avec Chimie Paris Tech, le GEMaC et le LPS.
Dans ce projet, les tâches suivantes de modélisation seront effectuées par le post-doc :
- Des calculs de structure électronique seront réalisés de manière à obtenir les propriétés énergétiques des défauts ponctuels et de leurs amas dans les métaux cubiques centrés envisagés dans le projet
- Ces données seront ensuite utilisées pour paramétrer un modèle cinétique de type dynamique d’amas. Ce formalisme est particulièrement bien adapté pour simuler l’évolution des amas de défauts ponctuels sur des temps longs.
Mise en oeuvre de nanomatériaux piézoélectriques pour la réalisation de capteurs et systèmes flexibles grandes surfaces
Le CEA LETI développe des capteurs innovants ultrasouples permettant la mesure de contraintes en exploitant les propriétés piézo-électriques de nanofils de Nitrure de Gallium (GaN) auto organisés. Les étapes de fabrication sont : i) croissance des nanofils, ii) organisation des nanofils, iii) encapsulation, iv) établissement des contacts. Des démonstrateurs ont déjà été réalisés sur de petites surfaces (1,5 cm²) en utilisant la technique du Langmuir Blodgett pour permettre l’organisation des nanofils. Ce projet vise à augmenter la surface des capteurs et à contrôler l’assemblage 1D et 2D des nanofils, en utilisant notamment une technologie au déroulé innovante du CEA LITEN, appelée Boostream®, dont les fonctionnalités sont similaires au LB dans sa configuration de base.
Le but de ce post doctorat est de développer une nouvelle brique technologique pour l’équipement Boostream® afin de permettre une organisation contrôlée des nanofils dans une configuration prédéfinie. Le candidat aura en charge d’optimiser l’assemblage des nanofils,l’obtention du film structuré ainsi que la fabrication, l’intégration et la caractérisation des transducteurs piézoélectriques aux dimensions de 15x15 cm².
Plus généralement, ce post doc donne l’opportunité de développer une connaissance générique pour manipuler des micro ou nanofils ou encore des fibres donnant accès à de nouvelles solutions techniques pour de nombreux domaines applicatifs comme la structuration de surface, la peau électronique, l’énergie…
Minimisation des dommages induits par la gravure par plasma sur les flancs des motifs de semi-conducteurs III-V
Ce projet consiste en l’étude des dommages induits par la gravure par plasma sur les flancs des motifs de semi-conducteurs III-V, afin de développer des solutions technologiques innovantes capables de les minimiser. Nous cherchons à mieux comprendre par quels mécanismes et dans quelle mesure les procédés de gravure plasma modifient les flancs des motifs de semi-conducteurs III-V et les conséquences que cela induit sur les propriétés optiques des dispositifs. Le semi-conducteur étudié sera l’Al0.17Ga0.83As qui possède d’excellentes propriétés opto-électroniques et un gain paramétrique non-linéaire fort.
Le PostDoc se focalisera sur la compréhension des mécanismes d’endommagement par gravure plasma. Il s’agira de déterminer quels sont les paramètres clés de la gravure plasma qui influencent les changements structuraux et chimiques observés sur les flancs de l’Al0.17Ga0.83As ainsi que les changements des propriétés optiques. Cela nécessitera le développement d’une méthodologie de caractérisation 3D quantitative à l’échelle nanométrique des flancs de gravure, basée sur la microscopie Auger et la cathodoluminescence. L’objectif sera ensuite de corréler les défauts structuraux induits par gravure plasma aux modifications des propriétés optoélectroniques. Enfin, le travail consistera à développer un procédé de gravure plasma permettant de minimiser les dommages induits sur les flancs, en explorant des techniques innovantes et alternatives. Des procédés de restauration et de passivations de ces flancs seront aussi étudiés.
Mise au point de procédés innovants de métallisation pour la fabrication de structures d’interconnexions avancées de cellules solaires
La fabrication de cellules solaires performantes et à coût maîtrisé constitue un enjeu majeur, et mobilise de nombreuses équipes de recherches et industriels dans le monde. De nombreuses solutions technologiques sont actuellement développées et évaluées dans ce but. Ainsi, la limitation de l’ombrage des zones actives par les lignes de métal qui collectent le courant est-elle l’une des voies d’amélioration les plus prometteuses. Cette étude vise à mettre au point un nouveau procédé de fabrication de lignes métalliques étroites en utilisant un dépôt électrochimique en remplacement de la sérigraphie. Dans cette approche, le substrat conducteur est revêtu d’un masque isolant qui définit les lignes, et le métal est directement déposé par électrolyse, sélectivement sur les zones faiblement conductrices (c’est-à-dire les lignes). Les procédés seront à adapter en fonction de la nature des zones faiblement conductrices sur lesquelles devront être réalisés les dépôts électrolytiques.
Modélisation multi-échelle de la structure et la mobilité des petits amas de défauts dans les métaux
L’irradiation par des particules de haute énergie provoque dans les matériaux cristallins la formation de défauts lacunaires et interstitiels. En migrant dans le matériau ces défauts peuvent se recombiner avec leur anti-défaut, s’éliminer sur des défauts étendus (surface, dislocation, joint de grain) ou former des amas de défauts. La structure et la mobilité des amas d’auto-interstitiels est une question encore largement ouverte. Début 2012 nous avons proposé une nouvelle structure tridimensionnelle périodique pour ces amas dans les métaux de structure cubique centrée, par opposition à la morphologie classique de la boucle bidimensionnelle [1]. La structure cristalline sous-jacente correspond à la phase de Laves C15. Ils se forment directement dans les cascades de déplacements et peuvent croître en capturant des auto-interstitiels. Ils constituent ainsi un nouvel élément important à prendre en compte dans les prévisions des évolutions microstructurales des matériaux à base de fer sous irradiation. Le principal enjeu maintenant est d’éclaircir plusieurs questions ouvertes : la stabilité relative des nouveaux amas en comparaison avec les amas traditionnels pour les tailles intermédiaires, les chemins de réaction qui relient les amas traditionnels aux C15, la cinétique d’interaction des nouvelles amas avec les boucles de dislocations, les effets de température finie etc.
Cellules photovoltaïques CIGS optimisées pour applications de récupération d’énergie en environnement intérieur
L’objectif de ce post-doctorat est le développement de cellules photovoltaïques à base de couches minces de CIGS, pour applications de récupération d’énergie (alimentation de dispositifs électroniques autonomes). Il s’agira d’optimiser les performances des cellules en environnement intérieur, c’est-à-dire sous faible niveau d’éclairement. Outre l’élaboration de couches minces de CIGS par dépôt physique en phase vapeur et leur caractérisation physico-chimique, le post-doctorant sera impliqué dans la réalisation et le test des cellules.