TOMOGLASS: Tomographie gamma d’émission appliquée à la caractérisation radiologique du reliquat de verre du procédé de vitrification en creuset froid

Le projet TOMOGLASS vise à développer un système de tomographie gamma innovant, capable de fonctionner en environnement de Haute Activité, pour caractériser en 3D les reliquats de verre issus du procédé de vitrification des déchets nucléaires. L’objectif est de localiser précisément les inclusions de platinoïdes faiblement solubles dans le verre, afin d’améliorer la compréhension et le pilotage du procédé. Le système repose sur un imageur gamma compact intégrant des détecteurs CZT pixellisés à haute résolution, collimaté (type sténopé) et monté sur bras robotisé. Il permettra une reconstruction multi-isotope à partir d’algorithmes tomographiques avancés. Ce projet s’inscrit dans la perspective de modernisation des installations de La Hague et de l’intégration de technologies numériques dans l’usine du futur.

Electronique embarquée de conditionnement pour électrode de référence dans un accumulateur Li-ion.

Dans le nouveau domaine de l'insertion d'Électrode de Référence à l'intérieur des cellules Li-ion, le PostDoc se concentrera sur l'électronique de pré-conditionnement nécessaire pour préserver la charge interne et gérer le signal de sortie de l'ER. Plus précisément, un nouveau système analogique embarqué sera développé, testé et évalué, complété par de vastes campagnes de tests sur des échantillons prototypes de cellules, afin de prouver les avantages des cellules de batteries Li-ion avec Électrode de Référence en termes de robustesse, de durabilité et de sécurité. La personne PostDoc planifiera et organisera le travail avec des niveaux de complexité croissants, notamment la conception électronique, la fabrication de PCB (externalisée) et les tests.
Il/Elle soutiendra également l'institut en communiquant efficacement sur son sujet innovant, en rédigeant des articles et en trouvant des revues appropriées, en faisant preuve d'autonomie et d'initiative active.
Le résultat global des 2 années de travail est l'introduction de la cellule Li-ion, équipée d'Électrode de Référence et d'électronique adaptée, dans les futurs produits de l'industrie des cellules Li-ion.
Pour plus d'information sur le sujet scientifique, voir:
https://liten.cea.fr/cea-tech/liten/Documents/Postdoc-Carnot-EF/EDR_BUFFER.pdf

Capteurs électrochimiques à base de diamant pour le contrôle de la pollution de l'eau en milieux urbains

Ce postdoc est proposé par le CEA List dans le cadre du projet européen UrbaQuantum (« A novel, integrated approach to urban water quality monitoring, management and valorisation ») de l’appel à projet HORIZON-CL6-2024-ZEROPOLLUTION-02. Ce projet a pour objectif principal de développer, en réponse aux contexte des changements climatiques, des capteurs, des modèles et des protocoles pour une meilleure gestion du cycle de l’eau en milieux urbains.
Le post-doctorant au sein du Laboratoire Capteurs et Instrumentation pour la Mesure (LCIM) du CEA List contribuera au développement des capteurs électrochimiques à base de diamant de synthèse et des protocoles de mesure associés pour la détection de polluants de types pharmaceutiques, métaux lourds, PFAS et pesticides. Ces capteurs seront miniaturisés et intégrés dans une cellule microfluidique, en partenariat avec le CEA-Leti, puis testés en conditions réelles sur le terrain.

Modélisation de la sédimentation et de la coalescence des gouttes dans les mélangeurs-décanteurs pour l’extraction liquide–liquid

La transition énergétique vers des technologies bas carbone (batteries Li-ion, photovoltaïque, éolien) dépend de matériaux critiques comme les terres rares (Dy, Nd, Pr) et certains métaux (Co, Ni, Li). Leur extraction pose des problèmes environnementaux, et leur recyclage reste limité du fait de leur faible concentration dans des déchets complexes, rendant leur séparation difficile. L’extraction liquide-liquide s’impose comme une méthode efficace pour purifier ces mélanges, mais son industrialisation est freinée par une compréhension partielle des phénomènes physico-chimiques impliqués, notamment dans les mélangeurs-décanteurs. Ces équipements, alliant chambre de mélange et zone de décantation, sont prisés pour leur compacité et leur rendement énergétique. Toutefois, les modèles actuels restent semi-empiriques, centrés sur la phase de mélange, et donc insuffisants pour prédire le comportement à grande échelle. Dans ce contexte, le programme national PEPR « Recyclabilité et réutilisation des matériaux » soutient une initiative du CEA visant à développer un jumeau numérique de ces dispositifs. Le postdoctorat proposé s’intègre à ce projet et porte sur la modélisation du décanteur. Le candidat mènera des expériences sur des émulsions bien caractérisées, injectées dans une maquette dédiée pour étudier leur sédimentation et l’évolution de la taille des gouttes. Ces données expérimentales serviront à valider un modèle décrivant le transport gravitaire et hydrodynamique des gouttelettes, ainsi que les phénomènes de coalescence et de rupture. Ce modèle sera ensuite couplé à celui de la chambre de mélange déjà en cours de développement, en vue d’obtenir un premier jumeau numérique.

Etude et développement d’un banc de test modulaire « high-side » pour la validation applicative de composant Grand Gap

Les transistors grand gap (GaN, SiC) jouent un rôle clé dans l’électronique de puissance, mais leur intégration industrielle reste freinée par des difficultés de mise en œuvre. Le composant 'high-side', au sein d’une structure en bras de pont, est particulièrement sensible aux transitoires de tension et de courant, lesquels dépendent fortement du routage, de la topologie et des modes de commutation (ZVS, ZCS). Son caractère flottant rend les mesures complexes et peut perturber les commutations lors des essais applicatifs. Une méthodologie adaptée aux transitoires rapides a été développée lors d’une thèse, aboutissant à un banc de test breveté pour la caractérisation des composants 'low-side'. Le sujet du post-doctorat présenté ici vise à adapter cette méthodologie aux composants 'high-side' qui sont plus complexe à piloter et mesurer, afin de caractériser et modéliser le vieillissement dû aux transitoires de grille dans des conditions réalistes. Le banc de test permettra de générer des profils de stress reproductibles sur 'low-side' et 'high-side', et de mesurer précisément des paramètres clés comme la tension de seuil ou les instabilités dynamiques. Pour atteindre ces objectifs, un nouveau banc sera conçu, intégrant une commande spécifique et des systèmes de mesure adaptés, en vue de tests applicatifs et d’essais de vieillissement ciblés.

Elaboration et caractérisation d'un matériau composite oxyde/oxyde

Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une bonne tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un procédé d’élaboration de CMC oxyde/oxyde à fibres longues et/ou courtes possédant des propriétés diélectriques, thermiques et mécaniques adaptées.

Synthèse, caractérisation et modélisation moléculaire des phases M-(A)-S-H

Le principal produit d’hydratation des ciments à base de magnésium et silicate est le silicate de magnésium hydraté (M-S-H), dont la composition évolue avec le temps et les interactions environnementales [réfs. 1,2]. Les rapports Mg/Si varient de 0,67 à 1,5, avec une teneur en eau variable et une possible incorporation d’aluminium. Les modèles atomistiques des phases M-(A)-S-H restent largement inexplorés [réf. 4], et la plupart de leurs propriétés sont encore inconnues, ce qui complique l’établissement de relations composition–propriétés.

Ce projet vise à élucider la structure atomique des silicates de magnésium hydratés (alumino)silicatés (M-(A)-S-H), en combinant techniques expérimentales et simulations atomistiques, et à estimer leurs propriétés mécaniques. L’étude se concentrera sur des compositions de M-(A)-S-H pertinentes pour les applications nucléaires ou les matrices cimentaires bas carbone

Implémentations sécurisées de la cryptographie post-quantique basée sur le code : co-conception logiciel-matériel et résistance aux canaux auxiliaires

L’informatique quantique menace les schémas cryptographiques traditionnels tels que RSA et ECC, rendant nécessaire le développement de la cryptographie post-quantique (PQC). Le processus de standardisation du NIST a sélectionné des algorithmes comme HQC, un mécanisme d'encapsulation de clé basé sur les codes. L’implémentation efficace et sécurisée de ces algorithmes, notamment dans des environnements contraints en ressources comme l’IoT et les systèmes embarqués, demeure un défi. Les attaques physiques, en particulier les attaques par canaux auxiliaires et par injection de fautes, nécessitent des contre-mesures robustes telles que le masquage, le "shuffling" et le "hiding". Ces protections introduisent toutefois des surcoûts en performance, rendant indispensable la co-conception matériel/logiciel. Le projet se concentre sur l’implémentation logicielle sécurisée de HQC avec une forte résistance aux attaques physiques. Les plateformes ciblées incluent les systèmes embarqués basés sur RISC-V. La recherche porte sur la conception et l’évaluation de contre-mesures contre les canaux auxiliaires sur ces plateformes. Les phases ultérieures étendront le travail à des prototypes FPGA pour valider la sécurité en matériel. Une exploration ASIC pourra suivre afin d’optimiser la surface, la consommation et les performances sous contraintes de sécurité. Le candidat développera également des techniques algorithmiques et architecturales de mitigation des attaques. Les contributions incluront des outils open source et des benchmarks. Ce travail soutiendra le déploiement sécurisé de la PQC dans des applications concrètes.

VALERIAN: simulation du transport d'électrons pour les modules les modules ITkPix d'ATLAS

Une description précise du transport des électrons et des photons dans la matière est cruciale dans plusieurs domaines phares du CEA, notamment la radioprotection et l’instrumentation nucléaire. Leur validation nécessite des études paramétriques dédiées et des mesures. Étant donné le peu de données expérimentales publiques, des comparaisons entre codes de calcul sont aussi utilisées. L’enjeu pour les années à venir est une qualification de ces codes dans un large domaine d'énergie, certains écarts entre leurs résultats ayant été identifiés lors d’études préliminaires du SERMA faisant intervenir le transport couplé de neutrons, photons et électrons. Le projet VALERIAN consiste à saisir l’opportunité créée par une campagne de prise de données unique en son genre prévue en 2025-2026 à l’IRFU (DRF) pour mieux caractériser ces écarts. En effet, l’IRFU s’est engagé à contrôler au moins 750 modules à pixels pour le nouveau trajectographe de l’expérience ATLAS, dans le cadre de la jouvence des grands détecteurs du CERN. De nombreuses mesures avec des sources bêta seront réalisées en 2025-2026 pour la qualification de ces modules.

Etude de la THERmodiffusion des Petits Polarons dans UO2

Le sujet est publié sur le site recrutement de CEA à l'adresse suivante :
https://www.emploi.cea.fr/offre-de-emploi/emploi-post-doctorat-etude-en-ab-initio-de-la-thermodiffusion-des-petits-polarons-dans-UO2-h-f_36670.aspx

Top