Mise en oeuvre de nanomatériaux piézoélectriques pour la réalisation de capteurs et systèmes flexibles grandes surfaces
Le CEA LETI développe des capteurs innovants ultrasouples permettant la mesure de contraintes en exploitant les propriétés piézo-électriques de nanofils de Nitrure de Gallium (GaN) auto organisés. Les étapes de fabrication sont : i) croissance des nanofils, ii) organisation des nanofils, iii) encapsulation, iv) établissement des contacts. Des démonstrateurs ont déjà été réalisés sur de petites surfaces (1,5 cm²) en utilisant la technique du Langmuir Blodgett pour permettre l’organisation des nanofils. Ce projet vise à augmenter la surface des capteurs et à contrôler l’assemblage 1D et 2D des nanofils, en utilisant notamment une technologie au déroulé innovante du CEA LITEN, appelée Boostream®, dont les fonctionnalités sont similaires au LB dans sa configuration de base.
Le but de ce post doctorat est de développer une nouvelle brique technologique pour l’équipement Boostream® afin de permettre une organisation contrôlée des nanofils dans une configuration prédéfinie. Le candidat aura en charge d’optimiser l’assemblage des nanofils,l’obtention du film structuré ainsi que la fabrication, l’intégration et la caractérisation des transducteurs piézoélectriques aux dimensions de 15x15 cm².
Plus généralement, ce post doc donne l’opportunité de développer une connaissance générique pour manipuler des micro ou nanofils ou encore des fibres donnant accès à de nouvelles solutions techniques pour de nombreux domaines applicatifs comme la structuration de surface, la peau électronique, l’énergie…
Internet des objets : Convertisseurs analogique/numérique reconfigurables ultra faible consommation en technologie FD-SOI avancée
Ce post doctorat adresse le contexte de l’internet des objets, des réseaux de capteurs ou des applications radiofréquences opportunistes dans lesquels les systèmes sur puce autonomes doivent en permanence s’adapter à leur environnement pour fonctionner efficacement et augmenter leur autonomie énergétique.
Dans les chaines de récepteur, le convertisseur analogique-numérique (CAN) situé entre les étages de mise en forme des signaux physiques incidents et l’ensemble du traitement du signal numérique est l’un des blocs cruciaux des systèmes sur puce. Ses caractéristiques en termes de résolution et de fréquence maximale de conversion déterminent les performances atteignables par le « System On Chip » SoC.
Ce poste s’inscrit dans l’étude, l’optimisation des performances et la réalisation physique de convertisseurs analogique-numérique qui doivent aussi être reconfigurables pour optimiser leur dépense énergétique par rapport à leur contexte environnemental. Cette étude s’appuiera sur les spécificités des technologiques FDSOI avancées pour réduire au maximum la consommation des convertisseurs.
Le post doctorant effectuera un état de l’art des topologies de convertisseurs analogiques-numériques existants, puis proposera, concevra et caractérisera une architecture intégrée en technologie FDSOI avancée.
Reconnaissance visuelle à large échelle
Le sujet de ce post-doc concerne la détection et la reconnaissance d’objets dans des images et les flux vidéo à grande échelle. Il s’agit d’une tâche fondamentale qui est l’objet de recherches très actives au niveau mondial, et une tendance affirmée en ce qui concerne les campagnes d’évaluation. L’aspect « grande échelle » concerne à la fois des bases de taille importantes (e.g dix millions d’images) ou un grand nombre de concepts à reconnaître (e.g 100 à 10000). Il s’agit alors de travailler à la fois sur la partie description des images et classification grande échelle.
Au niveau de la description, les résultats de l’état de l’art reposent sur des descripteurs locaux agrégés selon des dictionnaires de « mots visuels »éventuellement construits au moyen de noyaux de Fisher. Il est néanmoins nécessaire de recoder efficacement ces signatures de manière à gérer les grandes bases. Concernant l’apprentissage des concepts visuels ou des objets, de nombreux algorithmes utilisent des séparateurs à vaste marge mais d’autres approches sont parfois envisagées, comme celles basées ou la régression logistique.
Le poste proposé porte sur la recherche et le développement d’algorithmes efficaces permettant de rechercher des entités visuelles dans de très grandes bases. Différentes pistes sont envisagées et devront être discutées avec le candidat sélectionné en fonction des ses connaissances antérieures et de discussions techniques.
Déploiement de protocoles de consensus distribué sur des blockchains de type Smart Contract
L’objectif est de mettre en œuvre divers protocoles de consensus distribué sur des plateformes blockchain de type Smart Contracts aussi bien publiques que privées. Les techniques à la base des preuves d’enjeu et de la gestion de token seront analysées et leur niveau de sécurité sera évalué au regard de la consommation énergétique et de la qualité de la distribution de la confiance dans le système. Les techniques de vérification des transactions de la blockchain Ethereum seront mise en œuvre, ainsi que d’autres algorithmes, plus légers et moins consommateurs d’énergie, dédiés à des blockchains "privées" où les utilisateurs sont authentifiés. La plateforme Hyperledger sera utilisée pour tester les différents protocoles de consensus distribués. De nouveaux algorithmes seront proposés et les solutions retenues seront déployées pour des applications du domaine de l’internet des objets.
Dispositif d’analyse in situ par LIBS de milieux hostiles hautes températures
Le projet de recherche proposé vise à mettre au point un dispositif d’analyse in situ par la technique LIBS de milieux liquides en conditions extrêmes comme les matériaux à haute température de fusion ou les métaux liquides hautement volatils utilisés pour le développements de la production d’énergies décarbonnées. Le projet met en œuvre deux équipes du CEA spécialisées dans l’instrumentation LIBS, le développement analytique et les milieux à haute température.
A haute température, les métaux fondus présentent une forte réactivité en surface conduisant à des processus d’oxydation, nitruration... L’analyse non intrusive de cette surface par LIBS conduit à des résultats non représentatifs de la composition du métal fondu. Dans ce projet, un nouveau concept d’analyse intrusive en volume, basé sur un brassage mécanique couplé au dispositif d’analyse par LIBS est préconisé. Ce concept, protégé par un brevet CEA, permet le renouvellement de la surface du métal en fusion en maintenant une meilleure stabilité de la surface à analyser. Le projet aura pour objectif de mettre au point un démonstrateur dédié à l’analyse de tels milieux par LIBS, qui sera validé pour l’analyse d’impuretés dans le silicium liquide (T > 1450 °C) pendant les procédés de purification et de cristallisation pour les applications solaires photovoltaïques. A l’issue du projet, le système pourra être adapté puis testé au sein des équipes de la DEN pour l’analyse in situ de la pureté du sodium liquide, fluide caloporteur des réacteurs nucléaires de génération 4.
La carbonisation hydrothermale en tant que prétraitement des déchets avant leur conversion thermochimique par gazéification
La gazéification, transformation thermochimique généralement réalisée à environ 850°C, permet de produire un gaz utilisable en cogénération, ou pour la synthèse de produits chimiques ou de carburants. Des verrous subsistent essentiellement pour la gazéification de déchets d'origine biogénique ou fossile : alimentation irrégulière dans le réacteur due à une hétérogénéité en forme et composition ; formation de polluants inorganiques gazeux (HCl, KCl, NaCl, H2S) ou organiques (goudrons), qui gênent le procédé et/ou diminuent son efficacité, et doivent impérativement être nettoyés avant l’application finale.
L'objectif du post-doctorat sera de tester et d'optimiser une étape de prétraitement de la ressource par carbonisation hydrothermale (HTC). Cette transformation est réalisée à 180-250°C, dans un milieu humide et pressurisé (2-10 MPa). Le produit principal est un résidu solide carboné (hydrochar), valorisable par gazéification. L’HTC vise à limiter le relâchement de polluants organiques et inorganiques lors de la gazéification, et à homogénéiser et améliorer la forme physique de la ressource.
La démarche s’appuiera sur : des expérimentations en réacteurs batch sur des ressources et matériaux modèles préalablement sélectionnés, associées à une quantification et analyse des produits formés ; une analyse des résultats visant à élucider les liens entre la ressource et les propriétés de l’hydrochar en fonction des conditions opératoires ; une évaluation des rendements matière et énergie du procédé HTC-gazéification.
Etudes sur la physique des gaz et des interactions matière/laser pour la démonstration à l’échelle laboratoire de l’épuration isotopique du palladium (naturel).
Le palladium est un métal rare dont la demande mondiale est en forte augmentation. Or, il est présent en tant que produit de fission dans les combustibles nucléaires usés qui sont retraités en France. Il serait donc intéressant de recycler ce métal. Pour cela, il est nécessaire de procéder à une épuration isotopique, afin de supprimer un des isotopes du palladium, le 107, qui est un radionucléide artificiel à vie longue émetteur béta. Dans le cadre d'un nouveau projet sur 4 ans construit en réponse à l'appel d'offre du Plan d'Investissement et d'Avenir de l’État, le Service d’Etude des Procédés d’Enrichissement propose un contrat post-doctoral ayant pour objectif la compréhension des interactions gaz/laser dans le procédé de séparation isotopique du palladium par Lasers actuellement en cours de développement. L’objectif principal du projet est la démonstration finale de la faisabilité de séparation de palladium naturel (et non radioactif) pour la phase suivante de développement d’un premier pilote.
Le post-doctorant devra en particulier assurer l’étude du mode de production de la vapeur atomique près du point de fusion du métal pur, des mesures de spectroscopie par laser dans l’UV afin d’affiner les séquences sélectives de photoionisation des isotopes désirés. Pour ce faire, il participera à la définition, au montage et au développement de l'évaporateur, et au couplage des lasers du procédé avec l’enceinte à vide. Des échanges seront mis en place sur ce sujet spécifique avec des spécialistes reconnus au sein de la Direction de la Recherche Fondamentale du CEA. Les mesures de diagnostics des lasers mais aussi les mesures provenant des interactions gaz/laser sont à développer. La programmation (en Python et/ou sous Labview) de ces outils est un point essentiel du poste proposé. Une attention particulière sera portée sur les publications à réaliser essentiellement dans le cadre des interactions gaz/laser (photoionisation sélective des atomes d’intérêt et extraction).
Machine learning et simulateur pour l'estimation d'état d'un processus dynamique
Le but est de décrire au mieux l’état réel d'un procédé d'extraction liquide-liquide sur la base des données enregistrées. Or, ces dernières sont, par nature, entachées d’incertitudes et sous l’influence de variables exogènes qui ne sont pas enregistrées ni intégrées dans le jumeau numérique. Il est donc nécessaire de travailler le recollement des données entre la réalité et le simulé par PAREX+, simulateur dédié à ce type de procédé. Le code PAREX+ sera utilisé pour constituer une base conséquente de simulations : à chaque essai de paramètres opératoires (pavage de l’espace) sera associée la réponse dynamique du système. Le réseau de neurones convolutionnel (CNN) cherchera à résoudre le problème inverse : apprendre sur l’ensemble des réponses dynamiques les jeux de paramètres opérationnels possibles. Un enrichissement progressif de la base de données sera effectué dans les zones où le CNN ne sera pas assez performant. Une fois calibré, le CNN sera confronté aux données réelles et modifié pour tenir compte des imperfections des données. La finalité du CNN est d’être capable de bien identifier les paramètres du procédé à chaque pas de temps à des fins de contrôle et de diagnostic en temps réel : la dynamique observée est-elle celle attendue ?
Conception d’un contrôleur de vol d’un avion à propulsion électrique répartie
Le prix du carburant pour les systèmes de transport aéronautiques représente une part significative du prix de revient d’un trajet et tend à prendre de plus en plus d’importance. Par ailleurs, les nuisances acoustiques associées au bruit de la propulsion thermique au décollage est de moins en moins toléré par le voisinage des aéroports et tend à limiter le déploiement de ce type de transport, notamment pour les cours trajets (vols nationaux). Dans ce contexte, l’ONERA et le CEA se propose de réfléchir à des avions fonctionnant sur la base d’une propulsion électrique avec production d’énergie électrique à bord à partir d’hydrogène et couplée à des batteries de stockage électriques. L’objet de ce post doc n’est pas de gérer l’aspect de la production d’énergie, mais la partie concernant la propulsion électrique. En effet, la propulsion électrique pouvant réagir beaucoup plus rapidement qu’une turbine thermique et pouvant facilement être distribuée en différents point de l’avion, les degrés de liberté sont plus larges et une meilleure efficacité dans la propulsion envisageable. L’objectif de ce post doc est donc de proposer une solution de pilotage de turbines électriques fonctionnant de manière coopérative pour assurer à la fois une meilleure efficacité dans la propulsion et dans le même temps assurer le guidage de l’avion. Ce sujet fait appel à la fois à des connaissances dans les systèmes d’asservissement et les systèmes d’électronique de puissance pour gérer les transferts de puissance vers les différentes turbines électriques. Cette thèse s’appuiera sur les compétences de l’ONERA pour les aspects d’aérodynamisme, l’ONERA fournira notamment les modèles qui permettent de relier la vitesse de rotation/couple des turbines électrique à la poussé associée. Le CEA mettra à disposition ses compétences dans le domaine des capteurs, de l’électronique et de l’électronique de puissance.
Membranes conductrices protoniques à base de réseaux interpénétrés de polymères pour piles à combustible
Ce sujet se place dans le cadre du développement des piles à combustible à membrane échangeuse de protons (PEMFC), et a plus précisément pour objectif d’améliorer leur performance et leur durée pour un fonctionnement au-dessus de 100°C à faible humidité relative.
Les membranes perfluorosulfonées de type Nafion® constituent la référence pour la PEMFC du fait qu’elles présentent à la fois une conductivité protonique élevée à l’état hydraté ainsi qu’une bonne stabilité chimique. Néanmoins, leur conductivité protonique à une humidité relative inférieure à 70% chute, notamment au-dessus de 100°C, en raison d’une densité de groupements conducteurs trop faible. Cette caractéristique constitue une limitation majeure pour leur utilisation dans les conditions de fonctionnement propres au cahier des charges de l’application automobile. Avec ce type de polymère, l’augmentation de la densité de groupe sulfonique se traduit par une diminution de la stabilité mécanique et dimensionnelle des membranes. Or, cette stabilité est déjà faible et pose des problèmes de durée de vie. L’objectif de ce sujet est de réaliser de nouvelles structures de membrane à base de réseaux interpénétrés de polymères permettant de lever l’antagonisme entre conduction protonique et stabilité mécanique. Cette stratégie, récemment brevetée par le CEA (brevet n°08 06890), repose sur l’association de deux réseaux de polymères imbriqués l’un dans l’autre, l’un sulfoné conférant les propriétés de conduction et l’autre fluoré conférant la stabilité chimique et mécanique.
Le post-doctorant fabriquera les membranes et caractérisera leurs propriétés mécaniques, de conduction protonique, de perméabilité aux gaz. Il évaluera également leurs performances et leur durée de vie en pile à combustible.